www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung
Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung: spezielle Lösung
Status: (Frage) beantwortet Status 
Datum: 21:01 Di 07.05.2013
Autor: Nicky92

Aufgabe
Lösen Sie die DGL [mm] f(x)=-6e^{2x}y''+24e^{2x}y'+30e^{2x}y [/mm] für f(x)=1.
a) Wie lautet die Störfunktion?
b) Wie lautet der Ansatz für die spezielle Lösung, wenn [mm] f(x)=e^{x}sin(x) [/mm] gilt?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo zusammen,

ich bin beim Berechnen der obrigen Differentialgleichungen auf ein Problem gestoßen.

Und zwar weiß ich nicht, wie ich zur Lösung von Aufgabe b) komme.

Zum Aufgabenteil a) habe ich folgendes berechnet:

[mm] -6e^{2x}y''+24e^{2x}y'+30e^{2x}=1 |/(-6e^{2x}) [/mm]

=> [mm] y''-4'-5y=\bruch{1}{6}*e^{2x} [/mm]

somit erhalte ich für die Störfunktion [mm] \bruch{1}{6}*e^{-2x}. [/mm]

Aufgabe b)

[mm] -6e^{2x}y''+24e^{2x}y'+30e^{2x}y=e^{x}sin(x) [/mm]

Mein Ansatz wäre nun [mm] yp(x)=C*e^{j(\beta*x+\gamma)}, [/mm] oder bin ich da auf dem falschem Weg?
Ich weiß auch nicht recht, wie ich mit diesem Ansatz rechnen soll...

Kann mir da jemand auf die Sprünge helfen?



        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Di 07.05.2013
Autor: MathePower

Hallo Nicky92,

[willkommenmr]


> Lösen Sie die DGL [mm]f(x)=-6e^{2x}y''+24e^{2x}y'+30e^{2x}y[/mm]
> für f(x)=1.
>  a) Wie lautet die Störfunktion?
>  b) Wie lautet der Ansatz für die spezielle Lösung, wenn
> [mm]f(x)=e^{x}sin(x)[/mm] gilt?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Hallo zusammen,
>  
> ich bin beim Berechnen der obrigen Differentialgleichungen
> auf ein Problem gestoßen.
>  
> Und zwar weiß ich nicht, wie ich zur Lösung von Aufgabe
> b) komme.
>  
> Zum Aufgabenteil a) habe ich folgendes berechnet:
>  
> [mm]-6e^{2x}y''+24e^{2x}y'+30e^{2x}=1 |/(-6e^{2x})[/mm]
>  
> => [mm]y''-4'-5y=\bruch{1}{6}*e^{2x}[/mm]
>  
> somit erhalte ich für die Störfunktion
> [mm]\bruch{1}{6}*e^{-2x}.[/mm]

>


[ok]

  

> Aufgabe b)
>  
> [mm]-6e^{2x}y''+24e^{2x}y'+30e^{2x}y=e^{x}sin(x)[/mm]
>  
> Mein Ansatz wäre nun [mm]yp(x)=C*e^{j(\beta*x+\gamma)},[/mm] oder
> bin ich da auf dem falschem Weg?


Multipliziere die DGL zunächst mit [mm]e^{-2x}[/mm] durch.

Dann hast Du eine Störfunktion der Bauart [mm]e^{-x}*\sin\left(x\right)[/mm]

Der Ansatz  für die partikuläre Lösung lautet daher:

[mm]y_{p}\left{x}=c_{1}*e^{-x}*\sin\left(x\right)+c_{2}*e^{-x}*\cos\left(x\right)[/mm]

Und das nur, wenn die Störfunktion keine Lösung der homogenen DGL ist.


>  Ich weiß auch nicht recht, wie ich mit diesem Ansatz
> rechnen soll...
>  


Wenn Du allerdings die komplexe Rechnung bevorzugst,
dann ist die Störfunktion von der Bauart [mm]e^{x+j*x}[/mm]

Der Ansatz für die partikuläre Lösung lautet dann: [mm]c*e^{-x+j*x}[/mm]

Diesen Ansatz setzt Du in die gegebene DGL ein.

Der Imaginärteil der Lösung [mm]c*e^{-x+j*x}[/mm]
ist dann die reelle partikuläre Lösung.


> Kann mir da jemand auf die Sprünge helfen?
>  



Gruss
MathePower

Bezug
                
Bezug
Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 Mi 08.05.2013
Autor: Nicky92

Vielen Dank für deine ausführiche Antwort :-)

Eine Frage hätte ich aber noch, wie kommst du auf die Ansätze?
Ich arbeite mit der mathematischen Formelsammlung Papula und hab diesen
schon mehrmals durchgeblättert, finde aber die Lösungsansätze nicht :-(

Bezug
                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mi 08.05.2013
Autor: schachuzipus

Hallo Nicky92,

> Vielen Dank für deine ausführiche Antwort :-)

>

> Eine Frage hätte ich aber noch, wie kommst du auf die
> Ansätze?
> Ich arbeite mit der mathematischen Formelsammlung Papula
> und hab diesen
> schon mehrmals durchgeblättert, finde aber die
> Lösungsansätze nicht :-(

Na, du hast doch Internet ...

Eine blitzschnelle google-Suche ergibt etliche Treffer:

Etwa:

http://homepages.thm.de/~hg8070/math2kmub06/dgl_ansaetze.pdf


Gruß

schachuzipus

Bezug
                        
Bezug
Differentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Do 09.05.2013
Autor: MathePower

Hallo Nicky92,

> Vielen Dank für deine ausführiche Antwort :-)
>  
> Eine Frage hätte ich aber noch, wie kommst du auf die
> Ansätze?
>  Ich arbeite mit der mathematischen Formelsammlung Papula
> und hab diesen
> schon mehrmals durchgeblättert, finde aber die
> Lösungsansätze nicht :-(


Die Ansätze für die partikuläre Lösung bei einer linearen DGL
mit konstanten Koeffizienten sind immer nach der gegebenen
Störfunktion zu wählen.


Gruss
MathePower

Bezug
                
Bezug
Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Mi 08.05.2013
Autor: Nicky92

Das habe ich in der Klausur aber leider nicht ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de