www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Differentialgleichung 2.Ordnun
Differentialgleichung 2.Ordnun < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung 2.Ordnun: Partikuläre Lösung
Status: (Frage) beantwortet Status 
Datum: 19:57 Mi 25.03.2009
Autor: Panther

Aufgabe
[mm] y^2+9y=-e^{-4x}+x^2*cos(3x) [/mm]


[mm] \lambda1=/wurzel{-9} [/mm] = -3*/Wurzel{-1}

[mm] \lambda1=-/wurzel{-9} [/mm] =-3*/wurzel{-1}

Für die Homogene Lösung hab ich nun meine Formel:

Yh=C1*e^(/lambda1 x)+C2*e^(/lambda2 x)

Ich denke das ich nicht einfach /wurzel{-1} beim einsetzen in die homogene Lösung weglassen kann, oder?
Also nur 3 und -3 einsetzen kann, oder?

Wenn ich die Partikuläre Lösung mit der Wronski detominante bilden möchte, stört das i gewaltig.

Könnte mir vielleicht jemand sagen wie ich mit dem i umgehen soll wenn ich die Wronski detominante zur lösung hernehmen will?

ansonnsten mir vielleicht in kurzen schritten anhand dem beispiel mir die rechnung mit ansatz erklären?

( ich weis nur mehr zum Beispiel: [mm] x^2 [/mm] durch [mm] Ax^2+Bx+C [/mm] ersetzen und mit allen anderen teilen das gleiche (mit dem jeweiligen Ansatz eben), danach ausmultiplizieren und dann irgendwie vergleichen mit der igentlichen Störfunktion.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Differentialgleichung 2.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Mi 25.03.2009
Autor: MathePower

Hallo Panther,



> [mm]y^2+9y=-e^{-4x}+x^2*cos(3x)[/mm]
>  
>
> [mm]\lambda1=/wurzel{-9}[/mm] = -3*/Wurzel{-1}
>  
> [mm]\lambda1=-/wurzel{-9}[/mm] =-3*/wurzel{-1}
>  
> Für die Homogene Lösung hab ich nun meine Formel:
>  
> Yh=C1*e^(/lambda1 x)+C2*e^(/lambda2 x)
>  
> Ich denke das ich nicht einfach /wurzel{-1} beim einsetzen
> in die homogene Lösung weglassen kann, oder?
>  Also nur 3 und -3 einsetzen kann, oder?


Nun, wenn eine lineare DGL 2. Ordnung  durch den Ansatz [mm]y=e^{\lambda x}[/mm] für
[mm]\lambda[/mm] komplexe Lösungen

[mm]\lambda_{1,2}=a \pm bi, \ b \not= 0 [/mm]

besitzt, so sind

[mm]e^{ax}*\sin\left(bx\right), \ e^{ax}*\cos\left(bx\right)[/mm]

Lösungen der homogenen DGL.


>  
> Wenn ich die Partikuläre Lösung mit der Wronski detominante
> bilden möchte, stört das i gewaltig.
>  
> Könnte mir vielleicht jemand sagen wie ich mit dem i
> umgehen soll wenn ich die Wronski detominante zur lösung
> hernehmen will?
>  
> ansonnsten mir vielleicht in kurzen schritten anhand dem
> beispiel mir die rechnung mit ansatz erklären?
>  
> ( ich weis nur mehr zum Beispiel: [mm]x^2[/mm] durch [mm]Ax^2+Bx+C[/mm]
> ersetzen und mit allen anderen teilen das gleiche (mit dem
> jeweiligen Ansatz eben), danach ausmultiplizieren und dann
> irgendwie vergleichen mit der igentlichen Störfunktion.
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruß
MathePower

Bezug
                
Bezug
Differentialgleichung 2.Ordnun: zuende gerechnet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Mi 25.03.2009
Autor: Panther

asso, also habe ich den falschen Ansatz benutzt.

C1*cos(3x)+C2*sin(3x) weil a=0 und B=3

also Wdet= cos(3x)*3*cos(3x)-(-3sin(3x)*sin(3x))

[mm] C1(x)=/integral{-sin(3x)*(-e^(4x)*x^2*cos(3x))/(Wdet)} [/mm]
[mm] C2(x)=/Integral{cos(3x)*(-e^(4x)*x^2*cos(3x))/(Wdet)} [/mm]

Yp=C1(x)*cos(3x)+C2(x)*sin(3x)

Ya=Yp+Yh

Danke hab total übersehen gehabt das ich ja den falschen Ansatz genommen habe.

sollte jetzt passen das Beispiel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de