www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung lösen
Differentialgleichung lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 22.01.2008
Autor: BieneJulia

Aufgabe
Bestimme die allgemeine Lösung von y' + y sin x = [mm] sin^{3} [/mm] x.

So - ich habe doch eine inhomogene lineare Gleichung vor mir, richtig?
Das bedeutet: die allgemeine Lösung besteht aus der allgemeinen Lösung der zugehörigen linearen homogenen Gleichung  und einer speziellen Lösung der inhomogenen Gleichung.
Meine allgemeine Lösung der homogenen Gleichung lautet: [mm] e^{cos x -1} [/mm]
Stimmt die schon mal soweit? Ich habe Probleme das Integral über [mm] e^{-cos u +1} [/mm] * [mm] sin^{3} [/mm] u du zu lösen, denn das müsste ja plus eine Konstante c mit den Grenzen Null und x meine spezielle Lösung sein ,oder?
Also erstmal: Ist das bis hierhin richtig oder liege ich völlig falsch?
Lieben Gruß und danke

JUlia



        
Bezug
Differentialgleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Di 22.01.2008
Autor: schachuzipus

Hallo Julia,

wie kommst du denn auf die -1 im Exponenten bei der homogenen Lösung?

Die DGL ist doch [mm] $y'=-y\sin(x)+\sin^3(x)$ [/mm]

Also homog. Problem: [mm] $y'=-y\sin(x)$ [/mm]

[mm] $\Rightarrow \int{\frac{1}{y} \ dy}=\int{-\sin(x) \ dx}$ [/mm]

[mm] $\Rightarrow \ln|y|=\cos(x)+c_0 \qquad [/mm] , [mm] c_0\in\IR$ [/mm]

[mm] $\Rightarrow y=c\cdot{}e^{\cos(x)} \qquad [/mm] , [mm] c\in\IR$ [/mm]

Dann Variartion der Konstanten:

[mm] $y(x)=c(x)\cdot{}e^{\cos(x)}\Rightarrow y'(x)=c'(x)\cdot{}e^{\cos(x)}-c(x)\cdot{}\sin(x)\cdot{}e^{\cos(x)}=-c(x)\cdot{}e^{\cos(x)}\cdot{}\sin(x)+\sin^3(x)$ [/mm]

[mm] $\Rightarrow c'(x)=\sin^3(x)\cdot{}e^{-\cos(x)}$ [/mm]

Also [mm] $c(x)=\int{\sin^3(x)\cdot{}e^{-\cos(x)} \ dx}$ [/mm]

Dem Integral kannst du mit der Substitution [mm] $u:=-\cos(x)$ [/mm] und - wenn ich das richtig sehe - anschließender 2facher partieller Integration beikommen


LG

schachuzipus



Bezug
                
Bezug
Differentialgleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 Di 22.01.2008
Autor: BieneJulia

Hallo!

Die Grenzen des Integrals sind doch immer von [mm] x_{0} [/mm]  zu x zu ziehen, oder? Zumindest haben wir das bis jetzt immer so gemacht.  Und so wie ich das verstanden hab ,ist [mm] x_{0} [/mm] gleich null? So komme ich dann auch auf das -1 im Exponenten, denn ich habe ja auch y' = -y sinx als homogene Gleichung.
exp ( [mm] \integral_{0}^{x}{-sin t dt} [/mm] ) wäre dann die lösung der homogenen Gleichung. Das ist dann bei mir [mm] e^{cos x -1}. [/mm]

Bei der inhomogenen Gleichung dann: [mm] \integral_{0}^{x}{e^{-cos x +1} * sin^{3} u du} [/mm]

Also dann mit Substitution und partieller Integration. Ich versuchs mal. Und ist das jetzt falsch mit den Grenzen?

Vielen Dank schonmal, lieben Gruß

Julia

Bezug
                        
Bezug
Differentialgleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:20 Do 24.01.2008
Autor: rainerS

Hallo Julia!

> Hallo!
>  
> Die Grenzen des Integrals sind doch immer von [mm]x_{0}[/mm]  zu x
> zu ziehen, oder?

Wenn du eine Anfangsbedingung [mm]y(x_0)=y_0[/mm] hast, dann schreibst du das Integral über dy von [mm]y_0[/mm] bis y und das Integral über dx von [mm]x_0[/mm] bis x.

> Zumindest haben wir das bis jetzt immer so
> gemacht.  Und so wie ich das verstanden hab ,ist [mm]x_{0}[/mm]
> gleich null?

In der Aufgabe ist nach der allgemeinen Lösung gefragt. Das heisst, du muss dein [mm]x_0[/mm] stehen lassen und darfst nicht einen Wert einsetzen (du hast ja keinen Wert für [mm]x_0[/mm] gegeben).

> So komme ich dann auch auf das -1 im
> Exponenten, denn ich habe ja auch y' = -y sinx als homogene
> Gleichung.
> exp ( [mm]\integral_{0}^{x}{-sin t dt}[/mm] ) wäre dann die lösung
> der homogenen Gleichung. Das ist dann bei mir [mm]e^{cos x -1}.[/mm]

Wenn du das [mm]x_0[/mm] stehen lässt, bekommst du [mm]\mathrm{e}^{\cos x-\cos x_0}[/mm]. Das kannst du umschreiben:

[mm]y = \mathrm{e}^{\cos x-\cos x_0} = \mathrm{e}^{\cos x} * \underbrace{\mathrm{e}^{-\cos x_0}}_{c} = c* \mathrm{e}^{\cos x} [/mm]

Das ist die allgemeine Lösung, wie sie schachuzipus angegeben hat: wo du die Konstante hinschreibst, ist egal, solange sie nur vorkommt. Seine Lösung ist einfacher.

> Bei der inhomogenen Gleichung dann:
> [mm]\integral_{0}^{x}{e^{-cos x +1} * sin^{3} u du}[/mm]

Auch hier hast du im Prinzip das Gleiche heraus, denn

[mm]\integral_{0}^{x}{e^{-cos x +1} * sin^{3} u du} = \integral_{0}^{x}{e^{-cos x} * e * sin^{3} u du}[/mm]

Dein Integral unterscheidet sich von seinem nur durch den konstanten Faktor e, der sich dann wieder gegen das [mm]\mathrm{e}^{-1}[/mm] in deiner Lösung weghebt.

> Also dann mit Substitution und partieller Integration. Ich
> versuchs mal. Und ist das jetzt falsch mit den Grenzen?

Die Grenzen sind egal: andere Grenzen bedeuten, dass du eine andere spezielle Lösung der inhomogenen Gleichung bekommst (nämlich durch Addition irgendeiner Lösung der homogenen DGL).

Viele Grüße
   Rainer


Bezug
                                
Bezug
Differentialgleichung lösen: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:38 Fr 25.01.2008
Autor: BieneJulia

Hey :)

Okay, vielen Dank, hab das dann mit der Substitution auch hinbekommen (nach einigen Vorzeichenfehlern .. ) :)

Lg
Julia

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de