www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Differentialrechnung
Differentialrechnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:09 Di 22.01.2013
Autor: maja89

Aufgabe
Sei

[mm] \sum_{n=0}^{∞} a_n x^n [/mm]

eine Potenzreihe mit Konvergenzradius T, wobei 1 < r < ∞ sei.

a) Bestimmen Sie den Konvergenzradius der Potenzreihe

[mm] \sum_{n=0}^{∞} a_n x^{2n} [/mm]

b) Bestimmen Sie den Konvergenzradius der Potenzreihe

[mm] \sum_{n=0}^{∞} c_n x^n [/mm]

wobei [mm] c_n=a_n^n [/mm] für alle n  ∈   0 sei.



ÜBER DER SUMME IMMER  ∞ !


Hey,
bin ziemlich verwirrt bei dieser Aufgabe. Wär auch super wenn ihr mir beim Lösen unter die Arme greifen könntet :)
Mir läuft leider die Zeit davon^^
Wäre also super super lieb und nett :)

Vielen Dank!

Liebe Grüße

Maja

Ps.Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Di 22.01.2013
Autor: leduart

Hallo
bei aller Eile, sieh dir deine posts mit Vorschau an, sie sind unlesbar. Also editier  bitte.
und wenigstens einen ansatz sehen wir immer SEHR gern
Gruss leduart

Bezug
        
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Di 22.01.2013
Autor: maja89

über der summe jeweils ∞
und unter a) rechts neben an xhoch2n wie bei den anderen zusammenhängend :)

Bezug
        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Di 22.01.2013
Autor: leduart

Hallo
ich hoffe du hast editiert. wenn bei [mm] x^n [/mm] der Radius T ist, was ist er dann bei [mm] (x^2)^n_ [/mm]
bei der naechsten, wie rechnet man denn den Konvergenzradius aus _
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de