www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differentialrechnung Ableitung
Differentialrechnung Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung Ableitung: Frage Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:57 So 12.12.2004
Autor: fatrix

Hallo allerseits,

vertreibe mir jetzt schon seit gut ner Stunde die Zeit(eher unfreiwillig ;)) mit folgender Aufgabe:

[mm] f(x)=x^{n}\*n^{x} [/mm]

gesucht ist die 1. Ableitung

Komme mit dem zweiten Term nicht klar wo x der Exponent ist. Der erste Term würde abgeleitet [mm] nx^{n-1} [/mm] ergeben, aber wie leite ich den zweiten ab?


ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Differentialrechnung Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 So 12.12.2004
Autor: nitro1185

Hallo!!!Wieso vertreibst du dir unfreiwillig die Zeit mit dieser Aufgabe.Du bist duch naturwissenschaftlicher Student,oder??:-)!!!

Also der Trick bei dieser Aufgabe ist es,dass du den term [mm] n^{x} [/mm] umschreibst!!

Also: [mm] f(x)=x^{n}*n^{x}=x^{n}*e^{ln(n)*x} [/mm]

so jetzt kannst du ganz normal die Produktregel anwenden bzw.

die Tatsache, dass [mm] \bruch{dy}{dx} e^{x}=e^{x} [/mm]

Ich hoffe ich konnte dir weiterhelfen: PS:Ich bin Physikstudent im Grundstudium-was studierst du?

MFG Daniel

Bezug
        
Bezug
Differentialrechnung Ableitung: Lösung
Status: (Frage) beantwortet Status 
Datum: 14:37 So 12.12.2004
Autor: fatrix

Super Danke!

Oh hab mich wohl bei der Anmeldung verklickt, studiere WiWi ;)

Dann müsste die erste Ableitung ja wie folgt aussehen oder?

[mm] f(x)=nx^{n-1}n^{x}+x^{n}ln(n)n^{x} [/mm]

Bezug
                
Bezug
Differentialrechnung Ableitung: Richtig !!
Status: (Antwort) fertig Status 
Datum: 15:18 So 12.12.2004
Autor: Loddar

Hallo fatrix,

wenn Du ganz links auch schreibst f'(x) (Du hast den Hochstrich für die Ableitung unterschlagen :-) ), sage ich:

[mm] $f'(x)=n*x^{n-1}*n^{x} [/mm] + [mm] x^{n}*ln(n)*n^{x}$ [/mm] [ok] !!

Zur Verdeutlichung ruhig auch mal ein paar "Mal-Punkte" setzen ...

Grüße Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de