www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differentiation
Differentiation < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiation: Ableitungen
Status: (Frage) beantwortet Status 
Datum: 16:28 So 21.01.2007
Autor: Stromberg

Aufgabe
Aufgabe

[mm] y=x^n e^x [/mm]

Hallo allerseits,

ich habe ein kleines Verständnisproblem beim Ableiten einer Funktion.
Folgendes zu oben genannter Aufgabe.

Ist mein Weg richtig?

[mm] y=x^n e^x [/mm]
y'=nx^(n-1) [mm] e^x [/mm] (soll heißen nx hoch n-1)

meines Wissens nach ist die Aufgabe nicht mehr weiter abzuleiten.
Stimmt das????

Wäre nett wenn mir jemand helfen könnte.

Gruß,
Stephan

        
Bezug
Differentiation: Produktregel
Status: (Antwort) fertig Status 
Datum: 16:30 So 21.01.2007
Autor: Loddar

Hallo Stromberg!


Du musst hier die MBProduktregel anwenden mit $u \ = \ [mm] x^n$ [/mm]  sowie  $v \ = \ [mm] e^x$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Differentiation: Frage zu Ableitung
Status: (Frage) beantwortet Status 
Datum: 16:44 So 21.01.2007
Autor: Stromberg

Hallo nochmal und vielen Dank für die schnelle Meldung.

Ich verstehe...Produktregel anwenden.

Für die Aufgabe [mm] y=x^n e^x [/mm] habe ich die Produktregel angewendet.
Kann bitte nochmal jemand überprüfen ob das soweit richtig ist?

y=nx^(n-1) * [mm] e^x [/mm] + [mm] x^n [/mm] * [mm] e^x [/mm]

Bezug
                        
Bezug
Differentiation: nun richtig
Status: (Antwort) fertig Status 
Datum: 16:48 So 21.01.2007
Autor: Loddar

Hallo Stromberg!


Nun stimmt es [ok] .


Wenn Du magst, kannst Du noch [mm] $e^x$ [/mm] oder auch [mm] $x^{n-1}*e^x$ [/mm] ausklammern.


Gruß
Loddar


Bezug
                                
Bezug
Differentiation: Frage zur Antwort
Status: (Frage) beantwortet Status 
Datum: 16:57 So 21.01.2007
Autor: Stromberg

Vielen Dank nochmal,

habe es verstanden.
Kannst du mir bitte bei einer weiteren Aufgabe helfen?

y=ax-b
    ------
    ax+b

So die Aufgabe.

Hier wende ich also wieder die Quotientenregel an f'g-fg' / [mm] g^2 [/mm]

Wie leite ich denn das ax ab?
Das b müsste meiner Ansicht nach jeweils 0 ergeben, oder

Bezug
                                        
Bezug
Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 So 21.01.2007
Autor: wieZzZel

Hallo

[mm] y=f(x)=\br{ax-b}{ax+b} [/mm]

[mm] f'(x)=\br{a(ax+b)-a(ax-b)}{(ax+b)^2}=\br{2ab}{(ax+b)^2} [/mm]

du hast recht: Ableitung einer Konstante (hier b) ist 0

tschüß und noch einen schönen Sonntag

Röby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de