www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Differenzenquotient
Differenzenquotient < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzenquotient: fast am ziel? oder doch nich?
Status: (Frage) beantwortet Status 
Datum: 13:36 Sa 10.12.2005
Autor: tempo

hi "matheräumler"
habe bei folgenden aufgaben probleme:

1. Eine Funktion f: [mm] \IR \to \IR [/mm] heißt gerade (ungerade) falls f(x)=f(-x) (bzw. f(x)=-f(-x)) für alle x [mm] \in \IR [/mm] gilt.

Zeigen Sie, daß die Ableitung einer geraden (ungeraden) Funktion ungerade (gerade) ist.

2. Die Funktion f: D [mm] \to \IR [/mm] sei in a [mm] \in [/mm] D differenzierbar. Zeigen Sie. daß
[mm] \limes_{h\rightarrow 0}(f(a+h)-f(a-h))/2h [/mm]
existiert und mit f'(a) übereinstimmt.

also ich bin da mit dem differenzenquotient (tipp vom prof.) drangegangen und habe das gefühl das ich "kurz vorm ziel irgendwie die ziellinie nicht sehe". und zwar habe ich f'(x) = [mm] \bruch{ f(x) - f(x_0) }{ x-x_0 } [/mm] (diff.quotient) und mit x - [mm] x_0 [/mm] = h -> [mm] \bruch{ f(h+x_0) - f(x_0) }{h} [/mm] und da ich jetzt erstmal eine gerade fkt. betrachte gilt ja f(x)=f(-x) also [mm] \bruch{ f(h+x_0) - f(x_0) }{h} [/mm] = [mm] \bruch{ f(-h-x_0) - f(-x_0)}{h} [/mm] und da müsste ich doch jetzt irgendwie auf eine ungerade fkt. kommen also -f(-x) ??? aber ich sehe das leider nicht. (der rückweg ist ja dann genauso, bloß mit ungerade auf gerade fkt...)
und bei der 2. aufgabe habe ich zum lim "0" addiert also steht nach lim=: [mm] \bruch{f(a+h) - f(a) + f(a) - f(a-h)}{2h} [/mm] und da es für die steigung im punkt a egal ist "ob ich sie in die pos. richtung oder negative richtung betrachte" ist also [mm] \bruch{ f(a+h)-f(a) }{2h} [/mm] = [mm] \bruch{ f(a)-f(a-h) }{2h} [/mm] darf ich das so ausdrücken? und das wäre ja [mm] \bruch{ f'(a) }{2} [/mm] + [mm] \bruch{ f'(a) }{2} [/mm] also gleich f'(a) ?!

        
Bezug
Differenzenquotient: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 14:30 Sa 10.12.2005
Autor: Loddar

Hallo tempo!



Die Grundidee ist auf jeden Fall richtig. Aber die Darstellung nicht ganz.


Es gilt schließlich nicht: [mm]\bruch{ f(a+h)-f(a) }{2h}[/mm] = [mm]\bruch{ f(a)-f(a-h) }{2h}[/mm] !!


Du kannst aber schreiben (und das meintest Du ja auch):

[mm]\limes_{h\rightarrow 0}\bruch{ f(a+h)-f(a) }{2h} \ = \ \limes_{h\rightarrow 0}\bruch{ f(a)-f(a-h) }{2h} \ = \ \bruch{1}{2}f'(a)[/mm]


Gruß
Loddar


Bezug
        
Bezug
Differenzenquotient: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 16:20 Sa 10.12.2005
Autor: Loddar

Hallo tempo!


Ich zeige Dir mal den Weg für $f(x)_$ gerade, d.h. es gilt: $f(-x) \ = \ f(x)$ :

$f(-x) \ := \ [mm] \limes_{h\rightarrow 0}\bruch{f(-x+h)-f(-x)}{h} [/mm] \ = \ [mm] \limes_{h\rightarrow 0}\bruch{f(-(x-h))-f(-x)}{h}$ [/mm]


Nun die Bedingung von oben einsetzen:

$f'(-x) \ = \ [mm] \limes_{h\rightarrow 0}\bruch{f(x-h)-f(x)}{h}$ [/mm]


Nun ersetze ich $h_$ durch [mm] $h^{\star} [/mm] \ := \ -h$ , um den Differenzenquotienten für $f'(x)_$ zu erhalten:

$f'(-x) \ = \ [mm] \limes_{h^{\star} \rightarrow 0}\bruch{f(x+h^{\star})-f(x)}{-h^{\star}} [/mm] \ = \ [mm] (-1)*\underbrace{\limes_{h^{\star} \rightarrow 0}\bruch{f(x+h^{\star})-f(x)}{h^{\star}}}_{= \ f'(x)}$ [/mm]


$f'(-x) \ = \ (-1)*f'(x) \ = \ -f'(x)$  q.e.d.


Gruß
Loddar


Bezug
                
Bezug
Differenzenquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Sa 10.12.2005
Autor: tempo

AHHH (bin ich bescheuert?!) (bitte keine antwort auf diese "unfrage" ;) ) habe mir gestern ja sogar skizzen zu geraden fkt. gemacht und dann sehe ich nicht das die (-1) negativ ist!!! oh man oh man (wo hab ich denn da hingeschaut)!
-danke Loddar!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de