www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ökonomische Funktionen" - Differenzialrechnung
Differenzialrechnung < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Di 10.12.2013
Autor: Ice-Man

Aufgabe
Eine Konditorei stellt unteranderem auch Torten her. Der Konditor weiß,dass er umso mehr Torten (Anzahl x) verkaufen kann, je geringer der Preis p(x) pro Torte ist. Der Preis lässt sich durch den Term p(x)= [mm] 0,005x^{2}-x+58 [/mm] (in €) beschreiben, falls gilt: 10≤x≤100
Andererseits entstehen dem Bäcker Selbstkosten sk(x) pro Torte,
die bei steigender Stückzahl abnehmen.

Der Term für den Gesamterlös lautet, [mm] e(x)=0,005x^{3}-x^{2}+58x [/mm]
Der Term für den Zusammenhang der Selbstkosten lautet, sk(x)=-0,1x+16
Der Term für den Gewinn lautet, [mm] g(x)=e(x)-x*sk(x)=0,005x^{3}-0,9x^{2}+42x [/mm]

a) Bei wie vielen verkauften Torten ist der Gewinn am größten bzw. am kleinsten?

b) Für welche Anzahl an Torten wird kein Gewinn erzielt?

Hallo,

ich würde gern mal was zu dieser Aufgabe fragen, denn ich bin mir bei der Lösung recht unschlüssig, da sie mir "unlogisch" erscheint.

Zu a)

Ich bilde die 1.Ableitung, setzte sie "0", berechne die x-Werte und setzte diese in die 2.Ableitung ein um zu sehen ob es sich um ein Max oder Min handelt. Und anschließend setzte ich die berechneten x-Werte aus der 1.Ableitung in die "Ausgangsgleichung=Gewinn" ein.
Ich möchte jetzt bitte nicht die komplette Berechnung aufschreiben, denn das wäre jetzt zu lang. Und vom Grunde her kann ich dies auch berechnen.

Das Ergebnis wäre das für eine Anzahl von 31,72, also 32 Torten wird der Maximale Gewinn von 586 € erzielt. Bei einer Anzahl von 88,28 Torten, also 88 Torten wird der minimale Gewinn von 133 € erzielt.

Meine Frage wäre jetzt warum der Gewinn geringer ist wenn der Konditor mehr Torten verkauft. Ich würde es so verstehen das der Gewinn umso größer wird je mehr Torten verkauft werden.
Aber wie gesagt, das verstehe ich leider nicht, bzw. kann es nicht ganz nachvollziehen.

Und zu b)

Hierei handelt es sich ja um eine einfache "Nullstellenberechnung", oder?
Nur wenn ich diese durchführe (Polynom 3.Grades), dann ist meine "1.Nullstelle" durch "ausklammern Null". Die beiden anderen Nullstellen würde ich mit der "p-Q Formel" untersuchen. Nur dann erhalte ich einen "negativen Ausdruck unter der Wurzel".

[mm] y=0,005x^{3}-0,9x^{2}+42x [/mm]
[mm] 0=x^{3}-180x^{2}+8400x [/mm]
[mm] 0=x^{2}-180x+8400 [/mm]


Ich weis, das dies unter der Hilfe der imaginären Zahlen zu berechnen geht allerdings ist dies bei diesem Aufgabenniveau nicht gefragt.
Nun ist meine Frage ob ich mich verrechnet habe oder ob dies, bei dieser hier gefragten Aufgabe wirklich der Fall ist?

Über eine Antwort wäre ich sehr dankbar.

        
Bezug
Differenzialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Di 10.12.2013
Autor: MathePower

Hallo Ice-Man,

> Eine Konditorei stellt unteranderem auch Torten her. Der
> Konditor weiß,dass er umso mehr Torten (Anzahl x)
> verkaufen kann, je geringer der Preis p(x) pro Torte ist.
> Der Preis lässt sich durch den Term p(x)= [mm]0,005x^{2}-x+58[/mm]
> (in €) beschreiben, falls gilt: 10≤x≤100
>  Andererseits entstehen dem Bäcker Selbstkosten sk(x) pro
> Torte,
>  die bei steigender Stückzahl abnehmen.
>
> Der Term für den Gesamterlös lautet,
> [mm]e(x)=0,005x^{3}-x^{2}+58x[/mm]
>  Der Term für den Zusammenhang der Selbstkosten lautet,
> sk(x)=-0,1x+16
>  Der Term für den Gewinn lautet,
> [mm]g(x)=e(x)-x*sk(x)=0,005x^{3}-0,9x^{2}+42x[/mm]
>  
> a) Bei wie vielen verkauften Torten ist der Gewinn am
> größten bzw. am kleinsten?
>  
> b) Für welche Anzahl an Torten wird kein Gewinn erzielt?
>  Hallo,
>
> ich würde gern mal was zu dieser Aufgabe fragen, denn ich
> bin mir bei der Lösung recht unschlüssig, da sie mir
> "unlogisch" erscheint.
>  
> Zu a)
>  
> Ich bilde die 1.Ableitung, setzte sie "0", berechne die
> x-Werte und setzte diese in die 2.Ableitung ein um zu sehen
> ob es sich um ein Max oder Min handelt. Und anschließend
> setzte ich die berechneten x-Werte aus der 1.Ableitung in
> die "Ausgangsgleichung=Gewinn" ein.
> Ich möchte jetzt bitte nicht die komplette Berechnung
> aufschreiben, denn das wäre jetzt zu lang. Und vom Grunde
> her kann ich dies auch berechnen.
>  
> Das Ergebnis wäre das für eine Anzahl von 31,72, also 32
> Torten wird der Maximale Gewinn von 586 € erzielt. Bei
> einer Anzahl von 88,28 Torten, also 88 Torten wird der
> minimale Gewinn von 133 € erzielt.
>
> Meine Frage wäre jetzt warum der Gewinn geringer ist wenn
> der Konditor mehr Torten verkauft. Ich würde es so
> verstehen das der Gewinn umso größer wird je mehr Torten
> verkauft werden.


Das liegt an der Erlösfunktion.

Der Erlös steigt zunächst bis zu einer gewissen Anzahl Torten,
dann sinkt er bis das Minimum dieses Erlöses erreicht ist,
und schliesslich steigt dieser wieder. Das Minimum des Erlöses
befindet sich etwa dort, wo das Minima des Gewinns ist.


> Aber wie gesagt, das verstehe ich leider nicht, bzw. kann
> es nicht ganz nachvollziehen.
>
> Und zu b)
>  
> Hierei handelt es sich ja um eine einfache
> "Nullstellenberechnung", oder?
>  Nur wenn ich diese durchführe (Polynom 3.Grades), dann
> ist meine "1.Nullstelle" durch "ausklammern Null". Die
> beiden anderen Nullstellen würde ich mit der "p-Q Formel"
> untersuchen. Nur dann erhalte ich einen "negativen Ausdruck
> unter der Wurzel".
>
> [mm]y=0,005x^{3}-0,9x^{2}+42x[/mm]
>  [mm]0=x^{3}-180x^{2}+8400x[/mm]
>  [mm]0=x^{2}-180x+8400[/mm]
>  
>
> Ich weis, das dies unter der Hilfe der imaginären Zahlen
> zu berechnen geht allerdings ist dies bei diesem
> Aufgabenniveau nicht gefragt.
> Nun ist meine Frage ob ich mich verrechnet habe oder ob
> dies, bei dieser hier gefragten Aufgabe wirklich der Fall
> ist?


Das ist bei dieser Aufgabe wirklich der Fall.


>  
> Über eine Antwort wäre ich sehr dankbar.


Gruss
MathePower

Bezug
                
Bezug
Differenzialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Di 10.12.2013
Autor: Ice-Man

Ich danke dir vielmals. Dann werde ich das mal dem Dozenten mailen fragen ob dort ein Fehler vorliegt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de