www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbar
Differenzierbar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbar: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:35 So 03.04.2011
Autor: Nadia..

Aufgabe
Sei $0 [mm] \in [/mm] U [mm] \subset R^2 [/mm] $ offen und $g: U [mm] \to [/mm] R $ eine beschränkte Funktion. Wir betrachten die Funktion $f: U [mm] \to [/mm] R$ mit
$f(x,y):= xy*g(x,y).$






Zeigen Sie, dass f im Nullpunkt total differenzierbar ist.

Eine Funktion [mm] f\colon [/mm] U [mm] \subset \mathbb{R}^n \to \mathbb{R}^m, [/mm] wobei U eine offene Menge ist, heißt in einem Punkt [mm] x_0 \in [/mm] U total differenzierbar (oder auch nur differenzierbar), falls eine lineare Abbildung [mm] L\colon \mathbb{R}^n \to \mathbb{R}^m [/mm] existiert, so dass

    [mm] \lim_{h \to 0} \frac{f(x_{0}+h)-f(x_0)-Lh}{\|h\|}=0 [/mm] gilt.




Ich geh davon aus das $Lh$ hier Hessesche Matrix von f ist, ich komme aber irgendwie nicht weiter :(.



Lg


Nadia

        
Bezug
Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Mo 04.04.2011
Autor: Marcel

Hallo Nadja,

> Sei [mm]0 \in U \subset R^2[/mm] offen und [mm]g: U \to R[/mm] eine
> beschränkte Funktion. Wir betrachten die Funktion [mm]f: U \to R[/mm]
> mit
> [mm]f(x,y):= xy*g(x,y).[/mm]
>  
>
>
>
>
>
> Zeigen Sie, dass f im Nullpunkt total differenzierbar ist.
>  Eine Funktion [mm]f\colon[/mm] U [mm]\subset \mathbb{R}^n \to \mathbb{R}^m,[/mm]
> wobei U eine offene Menge ist, heißt in einem Punkt [mm]x_0 \in[/mm]
> U total differenzierbar (oder auch nur differenzierbar),
> falls eine lineare Abbildung [mm]L\colon \mathbb{R}^n \to \mathbb{R}^m[/mm]
> existiert, so dass
>  
> [mm]\lim_{h \to 0} \frac{f(x_{0}+h)-f(x_0)-Lh}{\|h\|}=0[/mm] gilt.
>
>
>
>
> Ich geh davon aus das [mm]Lh[/mm] hier Hessesche Matrix von f ist,
> ich komme aber irgendwie nicht weiter :(.

nicht [mm] $Lh\,$ [/mm] ist die HessescheJacobi-Matrix, sondern [mm] $L\,$ [/mm] ist die HessescheJacobi Matrix (genauer: die Jacobi-Matrix, die (an der Stelle [mm] $x_0$ [/mm] differenzeribares) [mm] $f\,$ [/mm] an der Stelle [mm] $x_0$ [/mm] hat, also eigentlich ist [mm] $L=L_{x_0}$). $Lh\,$ [/mm] steht für nichts anderes als die Auswertung der HesseschenJacobi-Matrix an der Stelle [mm] $h\,,$ [/mm] also eigentlich [mm] $L(h)\,,$ [/mm] und aus Gründen, die Dir bekannt sein sollten (Matrixmultiplikation) ist [mm] $L(h)=L*h\,$ [/mm] ("Matrix-Vektor"-Produkt, wobei hier ein "Vektor" ja auch nur eine spezielle Matrix ist); kurz: [mm] $L(h)=L*h=Lh\,.$ [/mm]

Zu der Aufgabe:
Vielleicht kann man (für oben durch [mm] $f(x,y):=xy\;g(x,y)$ [/mm] definiertes [mm] $f\,$) [/mm]
[mm] $$\left\|\frac{f(x_0+h)-f(x_0)}{\|h\|}\right\|$$ [/mm]
ja abschätzen...

P.S.:
Damit das ganze mit den "linearen Abbildungen" ein wenig klarer wird, vergleichen wir es mal mit differenzierbaren Funktionen [mm] $\IR \to \IR\,.$ [/mm] Speziell betrachten wir mal [mm] $f(x)=x^2\,.$ [/mm]

Hier ist [mm] $f'(x)=2x\,.$ [/mm] An der Stelle [mm] $x_0$ [/mm] ist also die lineare Abbildung [mm] $\IR \to \IR$ [/mm] gegeben durch die $1 [mm] \times [/mm] 1$-Matrix [mm] $L(h)=(2x_0)*h\,.$ [/mm]

Also Beispiel für konkretes [mm] $x_0$: [/mm] Ist etwa [mm] $x_0=5\,,$ [/mm] so ist [mm] $L=L_{x_0}=L_5=(2*5)=10\,.$ [/mm] Konkreter heißt das, dass dann die lineare Abbildung $L$ (für [mm] $x_0=5$) [/mm] nichts anderes ist als die Abbildung
[mm] $$L=L_{x_0}=L_5:\begin{cases} \IR \to \IR \\ x \mapsto L(x)=(2*x_0)*x=(10)*x=10*x \end{cases}\,.$$ [/mm]

Du siehst also, dass [mm] $f(x)=x^2$ [/mm] (als Abbildung [mm] $\IR \to \IR$) [/mm] an der Stelle [mm] $x_0=5$ [/mm] als Ableitung die obige lineare Abbildung [mm] $L=L_5: \IR \to \IR$ [/mm] hat. Sie ordnet jedem Wert aus [mm] $\IR$ [/mm] das zehnfache [mm] ($=2*x_0$-fache) [/mm] des Wertes zu.

Gruß,
Marcel

Bezug
                
Bezug
Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 Mo 04.04.2011
Autor: Nadia..

Ja, auch wenn ich g(x,y)< C abschätze komme ich nicht weiter.


Lg



Bezug
                        
Bezug
Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Mo 04.04.2011
Autor: Marcel

Hallon Nadja,

> Ja, auch wenn ich g(x,y)< C abschätze komme ich nicht
> weiter.

ich habe noch einiges angemerkt und korrigiert, lies' das bitte nochmal durch. Ansonsten:
[mm] $$\|g(x,y)\| [/mm] < c$$
sollte eine Abschätzung sein, die du verwenden kannst. Bei $g(x,y) < c$ kann die Funktion nach unten unbeschränkt sein.

Vielleicht schaut auch noch jemand anderes mal drüber, denn leider habe ich jetzt fast keine Zeit mehr. Du solltest aber dennoch mal wenigstens mehr von Deinen Überlegungen mitteilen, damit man überhaupt sieht, dass und welche Gedanken Du Dir schon gemacht hast.

Gruß,
Marcel

Bezug
                                
Bezug
Differenzierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:55 Mo 04.04.2011
Autor: Nadia..

vielen dank, für die ausführliche Erklärung :).

Ich werde mich morgen mit der Aufgabe beschäftigen.

Lg


Nadia

Bezug
                        
Bezug
Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Mo 04.04.2011
Autor: fred97


> Ja, auch wenn ich g(x,y)< C abschätze komme ich nicht
> weiter.

Es ist immer wieder erstaunlich: da stellen Leute Fragen, weil sie mit einer Aufgabe nicht klar kommen, diese Leute bekommen Tipps, Anregungen und Antworten, machen davon aber gar keinen Gebrauch !!

Was hat Marcel Dir geraten:

Abschätzung von

    $ [mm] \left\|\frac{f(x_0+h)-f(x_0)}{\|h\|}\right\| [/mm] $

Hast Du das gemacht ?

FRED

>  
>
> Lg
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de