www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit
Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Fr 06.07.2012
Autor: paula_88

Aufgabe
Ist die Funktion f(x,y)= [mm] \bruch{x^{3}y}{x^{2}+y^{2}} [/mm] für [mm] (x,y)\not=(0,0) [/mm] und f(x,y)=0 für (x,y)=(0,0) im Punkt [mm] (x_{0},y_{0})=(0,0) [/mm] differenzierbar?

Hallo an alle,
ich habe nur ein paar kleine Fragen bezüglich Differenzierbarkeit, um zu wissen dass ich richtig liege ;-)

Ich habe immernoch ein wenig Verständnisprobleme, worin genau der Unterschied liegt zu zeigen, dass die partiellen Ableitungen existieren und dass die Funktion differenzierbar ist:

Die Differenzierbarkeit zeige ich anhand des Differentialquotienten:

[mm] \limes_{h\rightarrow 0} \bruch{f(0+h,0+h)-f(0,0))}{h}=\limes_{h\rightarrow 0} \bruch{h^{4}}{h^{3}+h^{3}}=\limes_{h\rightarrow 0}\bruch{h}{2}=0 [/mm]
Da der Grenzwert existiert ist die Funktion an der Stelle [mm] (x_{0},y_{0})=(0,0) [/mm]  differenzierbar.
Ist das so richtig gezeigt?

Differenzierbarkeit in einem Punkt impliziert doch dass in diesem Punkt alle Richtungsableitungen in diesem Punkt existieren und somit auch alle partiellen Ableitungen, oder?

Aber wenn ich theoretisch nochmal zeigen möchte dass beide ersten partiellen Ableitungen existieren, zeige ich dann einfach anhand des Differentielquotienten, einmal dass [mm] \limes_{h\rightarrow 0} \bruch{f(0+h,0)-f(0,0))}{h}=\bruch{\delta f}{\delta x} [/mm] und [mm] \limes_{h\rightarrow 0} \bruch{f(0,0+h)-f(0,0))}{h}=\bruch{\delta f}{\delta y} [/mm] existieren und habe es somit gezeigt?

Ich hoffe dass mein Problem verständlich geworden ist :-)
Vielen Dank im Voraus, Paula

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Fr 06.07.2012
Autor: fred97


> Ist die Funktion f(x,y)= [mm]\bruch{x^{3}y}{x^{2}+y^{2}}[/mm] für
> [mm](x,y)\not=(0,0)[/mm] und f(x,y)=0 für (x,y)=(0,0) im Punkt
> [mm](x_{0},y_{0})=(0,0)[/mm] differenzierbar?
>  Hallo an alle,
>  ich habe nur ein paar kleine Fragen bezüglich
> Differenzierbarkeit, um zu wissen dass ich richtig liege
> ;-)
>  
> Ich habe immernoch ein wenig Verständnisprobleme, worin
> genau der Unterschied liegt zu zeigen, dass die partiellen
> Ableitungen existieren und dass die Funktion
> differenzierbar ist:
>  
> Die Differenzierbarkeit zeige ich anhand des
> Differentialquotienten:
>  
> [mm]\limes_{h\rightarrow 0} \bruch{f(0+h,0+h)-f(0,0))}{h}=\limes_{h\rightarrow 0} \bruch{h^{4}}{h^{3}+h^{3}}=\limes_{h\rightarrow 0}\bruch{h}{2}=0[/mm]
>  
> Da der Grenzwert existiert ist die Funktion an der Stelle
> [mm](x_{0},y_{0})=(0,0)[/mm]  differenzierbar.
> Ist das so richtig gezeigt?

Nein.

Zeige: f ist in (0,0) partiell nach x und nach y differenzierbar und berechne dann grad f(0,0).

f ist in (0,0) genau dann differenzierbar, wenn

    [mm] \limes_{(h,k) \rightarrow (0,0)}\bruch{f(h,k)-f(0,0)-(h,k)*gradf(0,0)}{||(h,k)||}=0 [/mm]

FRED

>  
> Differenzierbarkeit in einem Punkt impliziert doch dass in
> diesem Punkt alle Richtungsableitungen in diesem Punkt
> existieren und somit auch alle partiellen Ableitungen,
> oder?
>  
> Aber wenn ich theoretisch nochmal zeigen möchte dass beide
> ersten partiellen Ableitungen existieren, zeige ich dann
> einfach anhand des Differentielquotienten, einmal dass
> [mm]\limes_{h\rightarrow 0} \bruch{f(0+h,0)-f(0,0))}{h}=\bruch{\delta f}{\delta x}[/mm]
> und [mm]\limes_{h\rightarrow 0} \bruch{f(0,0+h)-f(0,0))}{h}=\bruch{\delta f}{\delta y}[/mm]
> existieren und habe es somit gezeigt?
>  
> Ich hoffe dass mein Problem verständlich geworden ist :-)
>  Vielen Dank im Voraus, Paula


Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 So 08.07.2012
Autor: paula_88

Hallo an alle,
das heißt, wenn ich Differenzierbarkeit zeigen will, berechne ich:
[mm] \limes_{h\rightarrow 0} \bruch{f(0+h,0+h)-f(0,0)-Ah}{h} [/mm] mit A als Gradient.

[mm] \Delta f(x,y)=\vektor{\bruch{x^{2}+3y}{x^{4}y} \\ \bruch{x^{2}-y^{2}}{x^{3}y^{2}}} \Rightarrow \Delta f(0,0)=\vektor{0 \\ 0} [/mm]

Da der Gradient 0 ist, folgt wiederum dass [mm] \limes_{h\rightarrow 0} \bruch{f(0+h,0+h)-f(0,0)-Ah}{h}=\limes_{h\rightarrow 0} \bruch{h^{4}}{h^{3}+h^{3}}=\limes_{h\rightarrow 0}\bruch{h}{2}=0 [/mm]

Und somit ist die Funktion differenzierbar.
Ist das so richtig gezeigt?



Differenzierbarkeit in einem Punkt impliziert doch dass in
diesem Punkt alle Richtungsableitungen in diesem Punkt
existieren und somit auch alle partiellen Ableitungen,
oder?
Aber wenn ich theoretisch nochmal zeigen möchte dass beide
ersten partiellen Ableitungen existieren, zeige ich dann
einfach anhand des Differentielquotienten, einmal dass
$ [mm] \limes_{h\rightarrow 0} \bruch{f(0+h,0)-f(0,0))}{h}=\bruch{\delta f}{\delta x} [/mm] $
und $ [mm] \limes_{h\rightarrow 0} \bruch{f(0,0+h)-f(0,0))}{h}=\bruch{\delta f}{\delta y} [/mm] $
existieren und habe es somit gezeigt?

Vielen Dank schonmal ;-)
Liebe Grüße, Paula

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 So 08.07.2012
Autor: fred97


> Hallo an alle,
>  das heißt, wenn ich Differenzierbarkeit zeigen will,
> berechne ich:
>  [mm]\limes_{h\rightarrow 0} \bruch{f(0+h,0+h)-f(0,0)-Ah}{h}[/mm]
> mit A als Gradient.

Nein. Was habe ich geschrieben: f ist differenzierbar in(0,0)  [mm] \gdw [/mm]

$ [mm] \limes_{(h,k) \rightarrow (0,0)}\bruch{f(h,k)-f(0,0)-(h,k)\cdot{}gradf(0,0)}{||(h,k)||}=0 [/mm] $

>  
> [mm]\Delta f(x,y)=\vektor{\bruch{x^{2}+3y}{x^{4}y} \\ \bruch{x^{2}-y^{2}}{x^{3}y^{2}}} \Rightarrow \Delta f(0,0)=\vektor{0 \\ 0}[/mm]
>  
> Da der Gradient 0 ist, folgt wiederum dass
> [mm]\limes_{h\rightarrow 0} \bruch{f(0+h,0+h)-f(0,0)-Ah}{h}=\limes_{h\rightarrow 0} \bruch{h^{4}}{h^{3}+h^{3}}=\limes_{h\rightarrow 0}\bruch{h}{2}=0[/mm]
>
> Und somit ist die Funktion differenzierbar.
>  Ist das so richtig gezeigt?

Nein. s.o.


>  
>
>
> Differenzierbarkeit in einem Punkt impliziert doch dass in
>  diesem Punkt alle Richtungsableitungen in diesem Punkt
>  existieren und somit auch alle partiellen Ableitungen,
>  oder?

Ja


>  Aber wenn ich theoretisch nochmal zeigen möchte dass
> beide
>  ersten partiellen Ableitungen existieren, zeige ich dann
>  einfach anhand des Differentielquotienten, einmal dass
>  [mm]\limes_{h\rightarrow 0} \bruch{f(0+h,0)-f(0,0))}{h}=\bruch{\delta f}{\delta x}[/mm]
>  
> und [mm]\limes_{h\rightarrow 0} \bruch{f(0,0+h)-f(0,0))}{h}=\bruch{\delta f}{\delta y}[/mm]

Ja

FRED

>  
> existieren und habe es somit gezeigt?
>
> Vielen Dank schonmal ;-)
>  Liebe Grüße, Paula


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de