www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differenzierbarkeit => Stetig
Differenzierbarkeit => Stetig < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit => Stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 So 12.02.2006
Autor: didda

Aufgabe
Beweise dass aus Differenzierbarkeit Stetigkeit folgt.

Hallo!
Habe ne Frage zu unserer Mathehausaufgabe, und zwar haben wir aufbekommen den Beweis dass aus Differenzierbarkeit Stetigkeit folgt zu verstehen. Unsere Lehrerin gab uns dafür folgende internetseite:
[]http://math.uni-graz.at/cs/hm1/hm1se24.html.
Und schon in der ersten Zeile des Beweises habe ich ein kleiens Verständnisproblem, der rest ist mir jedoch klar. Wie komme ich zu der Aussage dass der grenzwert von f(x) - f(c) gleich dem grenzwert von (x - c) * f(x) - f(c) / x - c. Das müssten doch dann eigentlich ein Greztwertssatz sein, oder hab ich grad ne ziemliche Denkblockade?
Wäre echt cool wenn mir da jemand helfen könnte!
MfG,
didda

Edit:
Und noch ne kleine Frage, warum folgt aus der Letzten Zeile des Beweises, also c-c * f'(c) = 0 dass f(x) = f(c) ist ?


        
Bezug
Differenzierbarkeit => Stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 So 12.02.2006
Autor: mathmetzsch

Hallo,

die erste Zeile ist einfach Erweitern des Bruches mit x-c. Ich schreibe es mal anders auf:

[mm] \bruch{x}{1}=\bruch{x*y}{y} [/mm]

Wenn du jetzt das y wieder kürzst, dann hast du wieder den Ausgangsbruch. Jetzt verstanden? Das kann man natürlich auch innerhalb ein "lim-Ausdrucks" machen, denn es verändert sich nichts dadurch. Das sind so kleine mathematische Tricks, die oft beim Beweisen helfen. Es gibt da z.B. auch Nulladditionen [mm] (x^{2}=x^{2}+a-a) [/mm] oder so. Ansonsten ist der Beweis eigentlich sehr schön und auch leicht nachvollziehbar!

Viele Grüße
Daniel

Bezug
                
Bezug
Differenzierbarkeit => Stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 So 12.02.2006
Autor: didda

ohje, stimmt ^^
manchmal sieht man die einfachsten sachen nicht weil man viel zu kompliziert denkt.
Kannst du mir evtl auch noch sagen warum aus
(c-c) * f'(c) = 0
[mm] \limes_{x\rightarrow\c} [/mm] f(x) = f(c) folgt? Und warum dass dann Stetigkeit ist? wir haben nämlich gelernt dass eine Funktion stetig ist wenn lim f(x) = f(x) an der stelle x ist.

Bezug
                        
Bezug
Differenzierbarkeit => Stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 So 12.02.2006
Autor: madde_dong

Hallo didda,

auch das ist einfach erklärt:

Was du berechnest, ist  [mm] \limes_{x\rightarrow c} [/mm] f(x)-f(c)
Da diese Differenz Null ergibt, kann das nur heißen, dass  [mm] \limes_{x\rightarrow c} [/mm] f(x)=f(c)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de