www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Differenzierbarkeit von e^2x
Differenzierbarkeit von e^2x < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit von e^2x: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:26 So 29.10.2006
Autor: micbes786

Aufgabe
Die Funktion f: R [mm] \Rightarrow [/mm] R sei durch
[mm] f(x)=\begin{cases} 0, & \mbox{für } x=0 \\ e^{-\bruch{1}{x^2}}, & \mbox{für } x\not=0 \end{cases}[/mm]
erklärt. Zeigen Sie:
c) f ist beliebig oft differenzierbar im Punkt x=0 und [mm] f^{n} [/mm] (0)=0 für alle 0 [mm] \le [/mm] n [mm] \in \IZ. [/mm]  

Zu der oben genannten Aufgabe hatte ich mir überleget, dass mittels Induktion ein Beweis möglich sei, allerdings finde ich einfach nicht die Idee, so dass die erste Ableitung von[mm] e^-^2^-^x [/mm] gleich null wird. Ich hoffe Ihr könnt mir einen Denkanstoss geben.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Differenzierbarkeit von e^2x: Funktionsklärung
Status: (Antwort) fertig Status 
Datum: 18:58 So 29.10.2006
Autor: mathemaduenn

Hallo micbes,
Die von Dir genannte Funktion ist unstetig in 0 daher nicht differenzierbar.
Meinst Du: [mm] $e^{-\bruch{1}{x^2}}$ [/mm]
viele Grüße
mathemaduenn

Bezug
                
Bezug
Differenzierbarkeit von e^2x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Mo 30.10.2006
Autor: micbes786

Doch, an der Stelle 0 ist die Funktion durch die fallweise Definition definiert.
f(x) = 0 für x = 0
Das kam aufgrund kleinerer Schwierigkeiten mit dem dem Eingeben der Aufgabe nur nicht so ganz raus.

Bezug
                        
Bezug
Differenzierbarkeit von e^2x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Mo 30.10.2006
Autor: mathemaduenn

Hallo micbes786,
Was ich meine ist:
Deine Funktion ist in 0 unstetig
[mm] $\lim_{x \to 0} e^{-2-x}=e^{-2}\not=0$ [/mm]
Sie kann also in 0 nicht differenzierbar sein.
Also Wie soll sie aussehen?
viele Grüße
mathemaduenn

Bezug
                                
Bezug
Differenzierbarkeit von e^2x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:08 Mo 30.10.2006
Autor: micbes786

Stimmt, die Aufgabe war falsch gestellt, allerdings nicht von mir aus, sondern bereits auf dem Aufgabenblatt.
Richtig ist : $ [mm] e^{-\bruch{1}{x^2}} [/mm] $
Tut mir leid, dass dadurch einige Unklarheiten entstanden sind.



Bezug
        
Bezug
Differenzierbarkeit von e^2x: Ableitung =Polynom mal e hoch
Status: (Antwort) fertig Status 
Datum: 18:50 Mo 30.10.2006
Autor: mathemaduenn

Hallo micbes,
Nachdem die Funktion klar ist ein Ansatz:
Die Ableitungen dürften alle so aussehen [mm] P\left(\bruch{1}{x}\right)*e^{-\bruch{1}{x^2}} [/mm] wobei P(x) ein Polynom ist. Außerdem wäre aber [mm] \lim_{x \to \infty} x^k*e^{-x}=0. [/mm] Zusammen ergibt das die Behauptung.
Kannst Du beides zeigen?
viele Grüße
mathemaduenn
P.S.: Die Alternative wäre in der Standardliteratur(Analysis I) nach diesem Standardbsp. zu suchen. :-)

Bezug
                
Bezug
Differenzierbarkeit von e^2x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 Di 31.10.2006
Autor: micbes786

Danke für den Ansatz, ich hab die Aufgabe zusammen mit einem Komilitonen heut morgen fertig gemacht und das Übungsblatt abgegeben.
Großes DANKE nochmal für die schnelle und kompetente Hilfe. :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de