www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Differenzieren einer Funktion
Differenzieren einer Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren einer Funktion: Differentialquotient von 1/x
Status: (Frage) beantwortet Status 
Datum: 21:05 So 09.11.2008
Autor: Yasko

Aufgabe
[mm] \limes_{h\rightarrow0} \bruch{\bruch{1}{x+h}-\bruch{1}{x}}{h} [/mm]


Diese Fuktion soll ich per hand differenzieren, ich meine es auch zu können aber mein Kopf ist gerade so voll, ich komm und komm nicht drauf...

Der Differentialquotient ist ja [mm] \limes_{h\rightarrow0} \bruch{f(x+h)-f(x)}{h} [/mm]
Also in meinem Falle: [mm] \limes_{h\rightarrow0} \bruch{\bruch{1}{x+h}-\bruch{1}{x}}{h} [/mm]

wie kann ich nun [mm] \bruch{1}{x+h} [/mm] so per hand umformen, dass ich brauchbar mit der funktion rechnen kann und da am ende [mm] \bruch{-2}{x²} [/mm] rauskommt wenn alle anderen werte die mit h multipliziert werden ja gegen 0 gehen, bitte um Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


PS: Ich hoffe ich habe nichts falsches gemacht, ich meine diese Frage bereits gestellt zu haben, jedoch finde ich sie nicht (ich komme noch nicht richtig mit dieser Seite zurecht), bitte nicht böse sein, falls sie doppelt vorhanden sein sollte.

        
Bezug
Differenzieren einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 So 09.11.2008
Autor: Adamantin


> [mm]\limes_{h\rightarrow0} \bruch{\bruch{1}{x+h}-\bruch{1}{x}}{h}[/mm]
>  
> [mm]\limes_{h\rightarrow0} \bruch{\bruch{1}{x+h}-\bruch{1}{x}}{h}[/mm]
>  
> Diese Fuktion soll ich per hand differenzieren, ich meine
> es auch zu können aber mein Kopf ist gerade so voll, ich
> komm und komm nicht drauf...
>  
> Der Differentialquotient ist ja [mm]\limes_{h\rightarrow0} \bruch{f(x+h)-f(x)}{h}[/mm]
>  
> Also in meinem Falle: [mm]\limes_{h\rightarrow0} \bruch{\bruch{1}{x+h}-\bruch{1}{x}}{h}[/mm]
>  
> wie kann ich nun [mm]\bruch{1}{x+h}[/mm] so per hand umformen, dass
> ich brauchbar mit der funktion rechnen kann und da am ende
> [mm]\bruch{-2}{x²}[/mm] rauskommt wenn alle anderen werte die mit h
> multipliziert werden ja gegen 0 gehen, bitte um Hilfe.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> PS: Ich hoffe ich habe nichts falsches gemacht, ich meine
> diese Frage bereits gestellt zu haben, jedoch finde ich sie
> nicht (ich komme noch nicht richtig mit dieser Seite
> zurecht), bitte nicht böse sein, falls sie doppelt
> vorhanden sein sollte.

Erst einmal zum Ergebnis, es muss [mm] -\bruch{1}{x^2} [/mm] rauskommen, denn es gilt $ [mm] (x^{-1})'=-1*x^{-2} [/mm] $

Dann zum Bruch :) :

$ [mm] \limes_{h\rightarrow0} \bruch{\bruch{1}{x+h}-\bruch{1}{x}}{h}=\limes_{h\rightarrow0} \bruch{\bruch{x}{(x+h)*x}-\bruch{x+h}{x*(x+h)}}{h}=\limes_{h\rightarrow0} \bruch{\bruch{x-x-h}{(x+h)*x}}{h}=\limes_{h\rightarrow0} \bruch{\bruch{-h}{(x+h)*x}}{h}=\limes_{h\rightarrow0} \bruch{-h}{h*(x+h)*x}=\limes_{h\rightarrow0} \bruch{-1}{(x+h)*x}=\bruch{-1}{x*x} [/mm] $

Bezug
                
Bezug
Differenzieren einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 So 09.11.2008
Autor: Yasko

Danke für die Lösung, was Brüche angeht bin ich manchmal noch etwas unflexibel, ich hab es zwar versucht mit erweitern aber auf den selben nenner bringen, daran hab ich nicht gedacht, vielen Dank! :) Vielleicht komme ich später noch einmal auf deine bzw eure Hilfe zurück mit anderen (komplizierteren) Funktionen :)

Bezug
                        
Bezug
Differenzieren einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 So 09.11.2008
Autor: Yasko

Aufgabe
[mm] \limes_{h\rightarrow0}\bruch{\wurzel{(1+2(x+h))}-\wurzel{1+2x}}{h} [/mm]

Bei einer weiteren Funktion hab ich dasselbe problem, bitte wäre wer so nett mir hier den kniff zu erklären?
Ich habe hier die dritte binomische FOrmel angewandt, sodass sich die Wurzel aufhebt (durch erweitern mit den Wurzeltermen nur ein + dazwischen

[mm] \limes_{h\rightarrow0}\bruch{(\wurzel{(1+2(x+h))}-\wurzel{1+2x})*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}{h*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\limes_{h\rightarrow0}\bruch{(1+2(x+h))-(1+2x)}{h*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\limes_{h\rightarrow0}\bruch{(1+2x+2h)-1-2x}{h*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\limes_{h\rightarrow0}\bruch{+2h}{h*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\limes_{h\rightarrow0}\bruch{+2}{\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\bruch{+2}{\wurzel{1+2x}+\wurzel{1+2x}}=\bruch{2}{2*\wurzel{1+2x}}=\bruch{1}{\wurzel{1+2x}} [/mm]


Das Problem ist, die 2 im Zähler sollte ne 1 sein laut taschenrechner, wo ist mein Fehler?



//EDIT: Wie oben schon in der Rechnung zu ersehen ist, ich bin selbst drauf gekommen, schön doof wenn man nicht genau hinschaut, danke an alle leser :)

Bezug
                                
Bezug
Differenzieren einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 So 09.11.2008
Autor: schachuzipus

Hallo Yasko,

>
> [mm]\limes_{h\rightarrow0}\bruch{\wurzel{(1+2(x+h))}-\wurzel{1+2x}}{h}[/mm]
>  Bei einer weiteren Funktion hab ich dasselbe problem,
> bitte wäre wer so nett mir hier den kniff zu erklären?
>  Ich habe hier die dritte binomische FOrmel angewandt,
> sodass sich die Wurzel aufhebt (durch erweitern mit den
> Wurzeltermen nur ein + dazwischen

[ok] das ist genau die richtige Idee, du hast auch alles weitere richtig gerechnet, erst im allerletzten Schritt wird's falsch

>  
> [mm]\limes_{h\rightarrow0}\bruch{(\wurzel{(1+2(x+h))}-\wurzel{1+2x})*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}{h*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\limes_{h\rightarrow0}\bruch{(1+2(x+h))-(1+2x)}{h*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\limes_{h\rightarrow0}\bruch{(1+2x+2h)-1-2x}{h*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\limes_{h\rightarrow0}\bruch{+2h}{h*(\wurzel{1+2(x+h)}+\wurzel{1+2x})}=\limes_{h\rightarrow0}\bruch{+2}{\wurzel{1+2(x+h)}+\wurzel{1+2x})}[/mm] [ok]

>  [mm]\bruch{+2}{\wurzel{1+2x})}[/mm] [notok]

Wenn im letzten Term [mm] h\to [/mm] 0 läuft, so geht doch der Nenner gegen [mm] \sqrt{1+2(x+0)}+\sqrt{1+2x}=\sqrt{1+2x}+\sqrt{1+2x}=2\cdot{}\sqrt{1+2x}$ [/mm]

Und die 2 kürzt sich schön mit der 2 im Zähler raus ...

>  
> Das Problem ist, die 2 im Zähler sollte ne 1 sein laut
> taschenrechner, wo ist mein Fehler?

beim Grenzübergang


LG

schachuzipus

Bezug
                                        
Bezug
Differenzieren einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:02 Mo 10.11.2008
Autor: Yasko

Vielen lieben Dank für deine Hilfe, wirklich klasse wie hilfsbereit hier alle sind :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de