www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Differenzierung überprüfen
Differenzierung überprüfen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierung überprüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mo 16.05.2011
Autor: Sup

Aufgabe
Gegeben sind die vektorwertigen Funktionen [mm] \vec{a}(x) [/mm] und [mm] \vec{b}(x) [/mm] sowie die skalare Funktion f(x). Überprüfen sie, indem sie ausnutzen, dass Vektoren komponenten differenziert werden.
(i) [mm] \bruch{d}{dx}(\vec{a}(x)*\vec{b}(x)) [/mm] = [mm] \bruch{d\vec{a}}{dx}*\vec{b}+\vec{a}*\bruch{d\vec{a}}{dx} [/mm]
(ii) [mm] \bruch{d}{dx}(f(x)*\vec{a}(x)) [/mm] = [mm] \bruch{df}{dx}*\vec{a}+f(x)*\bruch{d\vec{a}}{dx} [/mm]
(iii) [mm] \bruch{d}{dx}(\vec{a}(x)x\vec{b}(x)) [/mm] = [mm] \bruch{d\vec{a}}{dx}x\vec{b}+\vec{a}x\bruch{d\vec{a}}{dx} [/mm]



Guten Abend liebe Mathe Community :)

Ich habe ein paar Fragen

1. "Überprüfen" heißt ja ich muss es nur nachrechnen, aber nicht beweisen oder?

2. Es wird in alle 3 Fällen [(i)-(iii)] ja einfach die Produktregel angewandt, was man ja auch auf einem Blick sofort sieht. Versteh nicht ganz, was es da noch zu überprüfen gilt?!

3. Dazu dann auch gleich die (vorerst) letzte Frage:
Sieht so die Ableitung einer Vektorwertigen Funktion aus:
[mm] \vec{a}'=\vektor{a_{1}'(x) \\ a_{2}'(x) \\ ... \\ a_{n}'(x) } [/mm]

Ih versuch mich gleich mal an (i) wobei ich das ganze wegen "2." noch relativ nutzlos finde:

[mm] \bruch{d}{dx}(\vec{a}(x)*\vec{b}(x)) [/mm] = [mm] \bruch{d}{dx} [a_{1}(x)*b_{1}(x) [/mm] + [mm] a_{2}(x)*b_{2}(x) [/mm] +  ... + [mm] a_{n}(x)*b_{n}(x)] [/mm]
Jetzt muss ich in der Klammer ja auch die Produktregel anwenden?!

[mm] =[a_{1}'(x)*b_{1}(x) +a_{1}(x)*b_{1}'(x)]+ [a_{2}'(x)*b_{2}(x)+a_{2}(x)*b_{2}'(x)]+ [/mm]  ... + [mm] [a_{n}'(x)*b_{n}(x)+a_{n}(x)*b_{n}'(x)] [/mm]

So nun die andere Seite
[mm] \bruch{d\vec{a}}{dx}*\vec{b}+\vec{a}*\bruch{d\vec{a}}{dx}= [/mm]
[mm] \vektor{a_{1}'(x) \\ a_{2}'(x) \\ ... \\ a_{n}'(x) }*\vec{b}+\vec{a}*\vektor{b_{1}'(x) \\ b_{2}'(x) \\ ... \\ b_{n}'(x) } [/mm]

So das jetzt ausmultipliziert und zusammengefasst ergibt das Obere.

(Hoffe ich hab mich vor lauter Zeichen jetzt nicht vertand)

Edit:
Bei (ii)
Was ist denn [mm] f(x)*\vec{a}(x)? [/mm]
Ist das das Gleiche wie bei (i) nur diesmal mit Skalar*Vektor=Vektor und nicht Vektor*Vektor=Skalar?

        
Bezug
Differenzierung überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:43 Di 17.05.2011
Autor: MathePower

Hallo Sup,

> Gegeben sind die vektorwertigen Funktionen [mm]\vec{a}(x)[/mm] und
> [mm]\vec{b}(x)[/mm] sowie die skalare Funktion f(x). Überprüfen
> sie, indem sie ausnutzen, dass Vektoren komponenten
> differenziert werden.
>  (i) [mm]\bruch{d}{dx}(\vec{a}(x)*\vec{b}(x))[/mm] =
> [mm]\bruch{d\vec{a}}{dx}*\vec{b}+\vec{a}*\bruch{d\vec{a}}{dx}[/mm]
>  (ii) [mm]\bruch{d}{dx}(f(x)*\vec{a}(x))[/mm] =
> [mm]\bruch{df}{dx}*\vec{a}+f(x)*\bruch{d\vec{a}}{dx}[/mm]
>  (iii) [mm]\bruch{d}{dx}(\vec{a}(x)x\vec{b}(x))[/mm] =
> [mm]\bruch{d\vec{a}}{dx}x\vec{b}+\vec{a}x\bruch{d\vec{a}}{dx}[/mm]
>  
>
> Guten Abend liebe Mathe Community :)
>  
> Ich habe ein paar Fragen
>  
> 1. "Überprüfen" heißt ja ich muss es nur nachrechnen,
> aber nicht beweisen oder?


Ja.


>  
> 2. Es wird in alle 3 Fällen [(i)-(iii)] ja einfach die
> Produktregel angewandt, was man ja auch auf einem Blick
> sofort sieht. Versteh nicht ganz, was es da noch zu
> überprüfen gilt?!


Die Gültigkeit der genannten Rechenregeln.


>  
> 3. Dazu dann auch gleich die (vorerst) letzte Frage:
>  Sieht so die Ableitung einer Vektorwertigen Funktion aus:
> [mm]\vec{a}'=\vektor{a_{1}'(x) \\ a_{2}'(x) \\ ... \\ a_{n}'(x) }[/mm]


Ja.


>  
> Ih versuch mich gleich mal an (i) wobei ich das ganze wegen
> "2." noch relativ nutzlos finde:
>
> [mm]\bruch{d}{dx}(\vec{a}(x)*\vec{b}(x))[/mm] = [mm]\bruch{d}{dx} [a_{1}(x)*b_{1}(x)[/mm]
> + [mm]a_{2}(x)*b_{2}(x)[/mm] +  ... + [mm]a_{n}(x)*b_{n}(x)][/mm]
>  Jetzt muss ich in der Klammer ja auch die Produktregel
> anwenden?!


Ja


>  
> [mm]=[a_{1}'(x)*b_{1}(x) +a_{1}(x)*b_{1}'(x)]+ [a_{2}'(x)*b_{2}(x)+a_{2}(x)*b_{2}'(x)]+[/mm]
>  ... + [mm][a_{n}'(x)*b_{n}(x)+a_{n}(x)*b_{n}'(x)][/mm]
>  
> So nun die andere Seite
>  
> [mm]\bruch{d\vec{a}}{dx}*\vec{b}+\vec{a}*\bruch{d\vec{a}}{dx}=[/mm]
>  [mm]\vektor{a_{1}'(x) \\ a_{2}'(x) \\ ... \\ a_{n}'(x) }*\vec{b}+\vec{a}*\vektor{b_{1}'(x) \\ b_{2}'(x) \\ ... \\ b_{n}'(x) }[/mm]
>  
> So das jetzt ausmultipliziert und zusammengefasst ergibt
> das Obere.


Ersetze [mm]\vec{a}=\vektor{a_{1}(x) \\ a_{2}(x) \\ ... \\ a_{n}(x) }[/mm] und [mm]\vec{b}=\vektor{b_{1}(x) \\ b_{2}(x) \\ ... \\ b_{n}(x) }[/mm]


>  
> (Hoffe ich hab mich vor lauter Zeichen jetzt nicht
> vertand)
>  
> Edit:
>  Bei (ii)
>  Was ist denn [mm]f(x)*\vec{a}(x)?[/mm]
> Ist das das Gleiche wie bei (i) nur diesmal mit
> Skalar*Vektor=Vektor und nicht Vektor*Vektor=Skalar?


Nein, das ist nicht das "Gleiche".


Gruss
MathePower

Bezug
                
Bezug
Differenzierung überprüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:45 Di 17.05.2011
Autor: Sup


> > Edit:
>  >  Bei (ii)
>  >  Was ist denn [mm]f(x)*\vec{a}(x)?[/mm]
> > Ist das das Gleiche wie bei (i) nur diesmal mit
> > Skalar*Vektor=Vektor und nicht Vektor*Vektor=Skalar?
>
>
> Nein, das ist nicht das "Gleiche".

Ja klar exakt das Gleich ist es nicht, aber es ist doch das gleiche Rechenprinzip/Rechenstruktur wie bei (i), nur, dass man man Ende einen Vektor sehen hat.
Nur ist jetzt [mm] f(x)\vec{a}= \vektor{f(x)a_{1}(x) \\ f(x)a_{2}(x) \\ ... \\ f(x)a_{n}(x) } [/mm]
Oder was ergibt das sonst?

Bezug
                        
Bezug
Differenzierung überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Di 17.05.2011
Autor: schachuzipus

Hallo Sup,


> > > Edit:
>  >  >  Bei (ii)
>  >  >  Was ist denn [mm]f(x)*\vec{a}(x)?[/mm]
> > > Ist das das Gleiche wie bei (i) nur diesmal mit
> > > Skalar*Vektor=Vektor und nicht Vektor*Vektor=Skalar?
> >
> >
> > Nein, das ist nicht das "Gleiche".
>   Ja klar exakt das Gleich ist es nicht, aber es ist doch
> das gleiche Rechenprinzip/Rechenstruktur wie bei (i), nur,
> dass man man Ende einen Vektor sehen hat.
>  Nur ist jetzt [mm]f(x)\vec{a}= \vektor{f(x)a_{1}(x) \\ f(x)a_{2}(x) \\ ... \\ f(x)a_{n}(x) }[/mm] [ok]
>  
> Oder was ergibt das sonst?

Ja, so stimmt's, $f$ ist ja als skalare Funktion vorausgesetzt.

Nun ableiten ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de