www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Dim des Untervektorraumes
Dim des Untervektorraumes < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dim des Untervektorraumes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 Do 21.04.2005
Autor: Reaper

Hallo hab da eine kleinere Frage wo ich mir nicht ganz sicher bin:

Sei K der Körper [mm] (Z_{5},+,*) [/mm]
V = [mm] K^{3} [/mm]
[mm] U_{1} [/mm] = {(x,y,z)|x+z = 0}

Um jetzt die Anzahl der Elemente in U zu bestimmen muss ich die dim von U
bestimmen da |U| = [mm] |K|^{n} [/mm]    n.....Anzahl der Basen in U
Ich weiß man kann dass jetzt umständlcih machen indem man alle Elemente
von U auflistet und sie dann auf lineare Unabhängigkeit überprüft, aber
normalerweise gilt doch die Regel:
x + z = 0 ...... x = -z

Da ich x durch einen Parameter z ausdrücken kann ist die dim = 1.
Nur ist das falsch...denn die dim ist leider 2. Wieso gilt diese Regel hier
nicht? Denn ich kann ja wohl kaum bei jedem Bsp. alle Elemente des
Unterraumes aufschreiben, zumahl der Unterraum hier noch einfach gehalten ist? Was mache ich falsch?



        
Bezug
Dim des Untervektorraumes: Das verflixte y
Status: (Antwort) fertig Status 
Datum: 12:38 Do 21.04.2005
Autor: Gnometech

Gruß!

Naja, der Denkfehler liegt einfach darin, dass Du das $y$ vergessen hast.

Natürlich gilt $x = -z$, aber $y$ ist beliebig bei den Vektoren aus $U$ und damit ist dieser Raum zweidimensional: Du hast zwei frei wählbare Koordinaten ($x$ und $y$ oder $z$ und $y$, je nach Geschmack), welche die dritte bestimmen.

Alles klar? :-)

Lars

Bezug
                
Bezug
Dim des Untervektorraumes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Do 21.04.2005
Autor: Reaper

Hallo
Danke jetzt ists mir klar...habs einfach übersehen.

Jetzt hab ich aber dann noch eine Frage:
Das Beispiel ist zwar so klar alleine vom Ansehen her aber ich will eben wieder
diese eine Universalregel anwenden können.

L = {(x,y)|x+y = 1}  ist Teilmenge des Vektorraums [mm] (Z_{2})^{2} [/mm]

Darf ich hier nicht einfach so die Regel anwenden da die lineare Hülle
, sprich alle Linearkombinationen gegeben sind und nicht der Unterraum
explizit denn die Dim ist ja 2, aber nach der Regel halt wieder nur 1.


Bezug
                        
Bezug
Dim des Untervektorraumes: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Do 21.04.2005
Autor: banachella

Hallo!

Dein Beispiel ist problematisch, weil $L$ kein Unterraum von [mm] $\IZ_2^2$ [/mm] ist, es gibt also auch keine Basis. Allerdings läßt er sich darstellen als [mm] $L=\vektor{1\\0}+\IZ_2\vektor{1\\1}$, [/mm] es ist also ein eindimensionaler affiner Unterraum von [mm] $\IZ^2_2$. [/mm]
Nach der Regel gilt dann
[mm] $\mathrm{dim}L=|\IZ_2|^1=2$. [/mm]
Und das stimmt auch offensichtlich, da ja [mm] $L=\left\{\vektor{1\\0};\vektor{0\\1}\right\}$. [/mm]

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de