www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Dimension
Dimension < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 So 19.11.2006
Autor: roadrunnerms

Seien U1,...,Um Unterräume des [mm] \IR [/mm] hoch n mit dimUi = n -1  fürr i = 1,...,m. Zeigen Sie die
Dimensionsabschätzung
dim (U1 [mm] \cap [/mm] ... [mm] \cap [/mm] Um) [mm] \ge [/mm] n-m

wie kann ich des denn nun beweisen ??
ich hab mir überlegt mittels induktion

induktionsanahme für i=1 und m=1
=> dim (U1) = n-1 [mm] \ge [/mm] n-1

induktionsvoraussetzung:
dim (U1 [mm] \cap [/mm] ... [mm] \cap [/mm] Um-1) [mm] \ge [/mm] n-(1-m)
=> dim (U1 [mm] \cap [/mm] ... [mm] \cap [/mm] Um-1)= dim Uz [mm] \ge [/mm] n-m+1
dim Uz = n-m+1+a  mit a [mm] \ge [/mm] o

induktionsschluss
dim ( Uz [mm] \cap [/mm] Um) = dim (uz)+dim (Um) - dim (Uz+Um)
                = n-m+1+a +(n-1) - dim (Uz+Um)

jetzt komm ich leider nichtmehr weiter.

kann man des überhaupt über induktion beweisen??

        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 So 19.11.2006
Autor: DaMenge

Hi,

das sieht inhaltlich doch schon sehr gut aus, aber könntest du nächste mal den Formeleditor verwenden (beim schreiben findest du darunter direkt eine eingabe-hilfe) - dann ist es auch gut lesbar.


>  => dim (U1 [mm]\cap[/mm] ... [mm]\cap[/mm] Um-1)= dim Uz [mm]\ge[/mm] n-m+1

>  dim Uz = n-m+1+a  mit a [mm]\ge[/mm] o

was soll [mm] U_z [/mm] sein ?!? die letzte Zeile mit dem a kannst du weglassen, denn du willst zum Schluß ehh nur abschätzen..

>  
> induktionsschluss
> dim ( Uz [mm]\cap[/mm] Um) = dim (uz)+dim (Um) - dim (Uz+Um)
>                  = n-m+1+a +(n-1) - dim (Uz+Um)

also eine Abschätztung für dim(S)=dim(Uz)+dim(Um)-dim(Uz+Um) ist gesucht.
du weißt ja schon, dass dim(Uz) [mm] $\ge$ [/mm] n-m+1
und du weißt, dass (n-2) [mm] $\le$ [/mm] dim(Uz+Um) [mm] $\le$ [/mm] n ist

also wenn  dim(Uz+Um) = n wird von der Summe maximal viel abgezogen und der term kann hierdurch nicht noch kleiner werden, also:
dim(S) [mm] $\ge$ [/mm] n-m+1 + (n-1) - n = n-m

viele Grüße
DaMenge

Bezug
                
Bezug
Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 So 19.11.2006
Autor: DaMenge

Hi,

vergiss bitte den Hinweis mit dem Formeleditor - bei Text in den Formeln ist es wirklich so wesentlich einfacher zu schreiben
(hab ich ja auch gemacht..)

viele Grüße
DaMenge

Bezug
                
Bezug
Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 So 19.11.2006
Autor: roadrunnerms

wher weiß ich den dass:
du weißt, dass (n-2) [mm] \le [/mm] dim(Uz+Um) [mm] \le [/mm] n ist

Bezug
                        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 So 19.11.2006
Autor: DaMenge

Hi,

eigentlich ist ja auch nur die abschätzung nach oben interessant und dafür überlegt man sich leicht, dass zwei Unterräume zusammen höchstens den gesamten Raum erzeugen können, also zusammen höchstens Dimension n haben.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de