www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Dimension
Dimension < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:47 Mo 21.11.2011
Autor: derahnungslose

Aufgabe
Gegeben seien die Vektoren v1=(3,0,3,6), v2=(2,-1,1,2), v3=(-1,1,0,0), v4=(0,1,2,pi) und v5=(2,1,4,4+pi) [mm] \in \IR^4. [/mm]  Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind und begründen Sie Ihre Antwort.
f) Der Vektorraum L(v1,v2,v3,v4,v5) hat Dimension 3.

Hallo Leute,
ich habe bei der Aufgabe geguckt, wie viele Vektoren linear unabhängig sind. Da bin ich auf 3 gekommen v1,v2 und v4. So nun steht in meinem Skript folgendes:

"Besitzt ein Vektorraum V eine Basis aus n Vektoren, so hat jede Basis genau n Elemente." Das würde doch für mich heißen, dass meine Vektoren 3 Einträge haben müsste, oder??? Das ist ja hier nicht der Fall.

Weiter steht in meinem Skript: "Hat V eine Basis mit n Elementen, so nenne wir n die Dimension von V und schreiben dimV:=n." -Das würde ja bei mir zutreffen und die Aussage wäre war.

Danke

        
Bezug
Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 21.11.2011
Autor: fred97


> Gegeben seien die Vektoren v1=(3,0,3,6), v2=(2,-1,1,2),
> v3=(-1,1,0,0), v4=(0,1,2,pi) und v5=(2,1,4,4+pi) [mm]\in \IR^4.[/mm]
>  Entscheiden Sie, ob die folgenden Aussagen wahr oder
> falsch sind und begründen Sie Ihre Antwort.
> f) Der Vektorraum L(v1,v2,v3,v4,v5) hat Dimension 3.
>  Hallo Leute,
>  ich habe bei der Aufgabe geguckt, wie viele Vektoren
> linear unabhängig sind. Da bin ich auf 3 gekommen v1,v2
> und v4. So nun steht in meinem Skript folgendes:
>
> "Besitzt ein Vektorraum V eine Basis aus n Vektoren, so hat
> jede Basis genau n Elemente." Das würde doch für mich
> heißen, dass meine Vektoren 3 Einträge haben müsste,
> oder???

Nein. Die Vektoren kommen doch aus dem [mm] \IR^4 [/mm]

> Das ist ja hier nicht der Fall.
>
> Weiter steht in meinem Skript: "Hat V eine Basis mit n
> Elementen, so nenne wir n die Dimension von V und schreiben
> dimV:=n." -Das würde ja bei mir zutreffen und die Aussage
> wäre war.

L(v1,v2,v3,v4,v5) ist ein Untervektorraum des  [mm] \IR^4 [/mm] und es stimmt, dass L(v1,v2,v3,v4,v5) die Dimension 3 hat.

FRED

>  
> Danke


Bezug
                
Bezug
Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Mo 21.11.2011
Autor: derahnungslose

Vielen Dank Fred ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de