www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Dimension &Basis von Unterraum
Dimension &Basis von Unterraum < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension &Basis von Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Sa 25.11.2006
Autor: Anja86

Aufgabe
U,W [mm] \subset \IR^4 [/mm] seien die folgenden Unterräume:
U:= [mm] {(a,b,c,d)^t \in \IR^4|b+c+d=0}, [/mm]
W:= [mm] {(a,b,c,d)^t \in \IR^4|a+b=0,c=2d} [/mm]
Bestimme Dimension und Basis von
a) U,
b) w,
c) U [mm] \cap [/mm] W

Hallo!
verstehe gerade nicht ganz wie man nur aus den Angaben b+c+d=0 bzw a+b=0, c=2d die Dimension und Basis bestimmen soll. Wäre für ein paar Tipps sehr dankbar.

Vielen Dank im vorraus!!
Anja


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dimension &Basis von Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Sa 25.11.2006
Autor: angela.h.b.


> U,W [mm]\subset \IR^4[/mm] seien die folgenden Unterräume:
>  U:= [mm]{(a,b,c,d)^t \in \IR^4|b+c+d=0},[/mm]
>  W:= [mm]{(a,b,c,d)^t \in \IR^4|a+b=0,c=2d}[/mm]
>  
> Bestimme Dimension und Basis von
>  a) U,
>  b) w,
>  c) U [mm]\cap[/mm] W
>  Hallo!
>  verstehe gerade nicht ganz wie man nur aus den Angaben
> b+c+d=0

Hallo,

[willkommenmr].

In U:= [mm] \{(a,b,c,d)^t \in \IR^4|b+c+d=0\} [/mm] sind also die [mm] \vektor{a \\ b \\ c \\ d}, [/mm] welche die Gleichung b+c+d=0 lösen.

Welche a,b,c,d sind das ?
Nun, a kommt in der Gleichung gar nicht vor.
a kann man also völlig beliebig wählen, [mm] a=\lambda [/mm]   mit [mm] \lambda\in \IR. [/mm]
Welche Bedingungen gibt's an den Rest? Gar nicht so viele! c und d kann man frei wählen, [mm] c=\mu, d=\nu, [/mm] nur das b muß dann passen [mm] b=-\mu- \nu. [/mm]

Also [mm] \vektor{a \\ b \\ c \\ d}=\vektor{\lambda \\-\mu- \nu \\ \mu \\ \nu} [/mm]

[mm] =\lambda\vektor{1 \\ 0 \\ 0 \\ 0}+\mu\vektor{0 \\ -1 \\ 1\\ 0}+\nu\vektor{0 \\ -1 \\ 0 \\ 1} [/mm]

Die drei Vektoren [mm] \vektor{1 \\ 0 \\ 0 \\ 0}, \vektor{0 \\ -1 \\ 1\\ 0}, \vektor{0 \\ -1 \\ 0 \\ 1} [/mm] spannen den Raum U auf.
Eine Basis hat man, wenn man eine größtmögliche linear unabhängige Teilmenge hiervon hat.

Wenn Du's verstanden hast, versuch Dich in ähnlicher Manier an W.

Gruß v. Angela

Bezug
                
Bezug
Dimension &Basis von Unterraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Sa 25.11.2006
Autor: Anja86

Vielen Dank für diese schnelle Antwort! Ist ja eigentlich ganz einfach. Hab wiedermal viel zu kompliziert gedacht. Ich versuch mich gleich mal an der b und c.
Gruß
Anja

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de