www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Dimension Teilraum
Dimension Teilraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension Teilraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 22.05.2011
Autor: BarneyS

Aufgabe
Welche Dimension hat der Teilraum des $ [mm] \IR^n [/mm] $, der aus den Lösungsvektoren $ x $ einer homogenen linearen Gleichung mit $ n $ Unbekannten besteht?

Hallo,

ich bin mir nicht ganz sicher, wie ich diese Aufgabe lösen soll. Erstmal ein paar Überlegungen:

Die Gleichung hat die Form: $ Ax=0 $

1. Fall: Die Matrix $ A $ ist quadratisch also $ n [mm] \times [/mm] n $

a) Es gibt nur die Triviale Lösung -> $ dim(T)=0 $

b) $ r(a) < n [mm] \Rightarrow [/mm] $ Es gibt unendlich viele Lösungen.

2. Fall: Die Matrix $ A $ ist eine $ m [mm] \times [/mm] n $ Matrix, mit $ m < n $, so gilt 1. b), da $ r(A) < n $ immer gilt.

3. Fall: $ m>n $
Hier müssten die gleichen Überlegungen, wie zu 1. a) und b) gelten?

Interessant ist eigentlich nur der Fall 1. b):

Ist $ n - r(A) = 1 $, so kann man einen Parameter des Lösungsvektors frei wählen. Die Menge aller Lösungsvektoren wären dann aber linear abhängig und die Dimension des Raumes mit den Lösungsvektoren als Basis wäre $ dim(T)=1 $.

Ist $ n - r(A) = 2 $, so sind 2 Parameter frei wählbar.

Die Dimension wäre folglich $ dim(T)=2 $.

Ich denke mal, dass die Dimension immer $ n - r(A) $ ist.

Aber wie kann man das beweisen, also mathematisch formal?

Vielen Dank :)


        
Bezug
Dimension Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 So 22.05.2011
Autor: rainerS

Hallo!

> Welche Dimension hat der Teilraum des [mm]\IR^n [/mm], der aus den
> Lösungsvektoren [mm]x[/mm] einer homogenen linearen Gleichung mit [mm]n[/mm]
> Unbekannten besteht?
>  Hallo,
>  
> ich bin mir nicht ganz sicher, wie ich diese Aufgabe lösen
> soll. Erstmal ein paar Überlegungen:
>  
> Die Gleichung hat die Form: [mm]Ax=0[/mm]
>  
> 1. Fall: Die Matrix [mm]A[/mm] ist quadratisch also [mm]n \times n[/mm]

In der Aufgabe steht nicht Gleichungssystem. Es geht um nur eine Gleichung der Form

[mm] a_1x_1+\dots+a_nx_n=0 [/mm] .

Viele Grüße
   Rainer



Bezug
                
Bezug
Dimension Teilraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:51 Mo 23.05.2011
Autor: BarneyS

Cool, jetzt verstehe ich auch den Zusammenhang der beiden Aufgabenteile^^

Die Dimension müsste doch dann n-1 sein, richtig?

Bezug
                        
Bezug
Dimension Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mo 23.05.2011
Autor: angela.h.b.


> Die Dimension müsste doch dann n-1 sein, richtig?

Ja.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de