Dimension bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:54 Fr 25.08.2006 | Autor: | maggi20 |
Aufgabe | Es sei [mm] V=R^4; [/mm] U=(a,b,c,d E [mm] R^4 [/mm] / b+c+d=0), W= (a,b,c,d, E [mm] R^4/ [/mm] a+b=0, c=2d) U, W sind Teilräume von V. Bestimmen Sie dim U, dimW und dim von U und W. |
Hallo!
Könnte mir bitte jemand weiterhelfen. Ich habe am Mo Prüfung und komme hier eibfach nicht weiter. Ich soll die dim also die maximale Anzahl linear unabhängiger Vektiren bestimmen. Aber ich verstehe nicht wie ich hierbei vorgehen soll. Soll ich vor a,b,c, etc. ein Skalar vorsetzen und für a,b,c verschiedene reelle Zahlen um ein Gleichungssystem zu schaffen und dann durch das Gaussverfahren den Rang ermitteln. Ist das richtig so oder komplet falsch.
Liebe grüsse
maggi
|
|
|
|
Hallo Maggi.
Soweit ich Dich verstanden habe, ist Deine Methode nicht falsch.
Aber es geht vielleicht auch noch einfacher:
Ich machs mal am Beispiel von $U$ vor: $b+c+d=0 [mm] \gdw [/mm] d=-b-c$, d.h.
[mm] $U=\{(a,b,c,d)\in\IR^4\mid b+c+d=0\}=\{(a,b,c,-b-c)\mid a,b,c\in\IR\}$. [/mm]
Wieviele Koordinaten kannst Du nun frei wählen? Was ist dann [mm] $\dim [/mm] U$?
Gruß,
Christian
|
|
|
|
|
Hallo nochmal!
Also, wenn Du die Umformung verstanden hast, bist Du dem Ziel sehr nahe. Denn das, was ich geschrieben habe, also die Frage, wieviele Koordinaten Du frei wählen kannst, ist in der Tat dasselbe wie die Frage nach der Dimension, und auch wie die Frage nach der maximalen Anzahl linear unabhängiger Vektoren, die den Raum aufspannen.
Das kann man an folgender weiterer Umformung sehen:
[mm] $U=\{(a,b,c,d)\in\IR^4\mid b+c+d=0\}=\{(a,b,c,-b-c)\mid a,b,c\in\IR\}=\left\{a\vektor{1 \\ 0 \\ 0 \\ 0}+ b\vektor{0 \\ 1 \\ 0 \\ -1}+ c\vektor{0 \\ 0 \\ 1 \\ -1}\mid a,b,c\in\IR \right\}$, [/mm] denn die Vektoren, die in der Menge stehen, erzeugen diese ja, und sind auch linear unabhängig.
Gruß,
Christian
|
|
|
|