www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Dimension v. aff. Unterräumen
Dimension v. aff. Unterräumen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension v. aff. Unterräumen: Hilfe, Tipps zur Lösung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:10 So 14.03.2010
Autor: Dixiklo

Aufgabe
Im affinen Raum [mm] \mathcal{A}(\IR^4) [/mm] sind gegeben:  [mm] \mathcal{A}1:=[a,b,c]aff [/mm] und [mm] \mathcal{A}2:= [/mm] [d,e,f]aff mit

a= [mm] \vektor{4 \\ 4\\ 4 \\ 4} [/mm] ; b = [mm] \vektor{5 \\ 4\\ 6 \\ 5} [/mm] ; c [mm] =\vektor{7 \\ 5\\ 4 \\ 5} [/mm] ; d= [mm] \vektor{1 \\ 0\\ 0 \\ 0} [/mm] ; e [mm] =\vektor{1 \\ -1\\ 6 \\ 2} [/mm] ; f= [mm] \vektor{1 \\ 1\\ -6 \\ -2} [/mm]

a) Bestimme [mm] dim\mathcal{A}1, dim\mathcal{A}2, [/mm] und [mm] \mathcal{A}1 \cap \mathcal{A}2, [/mm] Gib Basis von [mm] \mathcal{A}1 \vee \mathcal{A}2 [/mm] an und zeige dass sie parallel sind.

Mh also zuerst häng ich mal mit dr Dimension weilk im Internet hab ich überall nur gelesen, dass ses keine dim, osndern bei Matrizen nur einen rg gibt, außerdem weß ic hdass es auch noch einen defekt gibt. Na gut der Rang ist mir klar, den berechnet man durch Umformen, bis es nicht mehr geht...... und alle Zeilen welche l.a. sind ergeben dan den Rang, aber wie kann ich nun wirklich d. dim und das weitere berechnen?

Danke für eure Antwort.....lg Dixi

Ich habe diese Frage in kein anderes Forum gestellt

        
Bezug
Dimension v. aff. Unterräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 So 14.03.2010
Autor: angela.h.b.


> Im affinen Raum [mm]\mathcal{A}(\IR^4)[/mm] sind gegeben:  
> [mm]\mathcal{A}1:=[a,b,c]aff[/mm]

Hallo,

hier solltest Du mal aufschreiben, wie das definiert ist - für Dich und andere.

Das wird ja die affine Hülle sein, vermute ich.


> und [mm]\mathcal{A}2:=[/mm] [d,e,f]aff mit
>  
> a= [mm]\vektor{4 \\ 4\\ 4 \\ 4}[/mm] ; b = [mm]\vektor{5 \\ 4\\ 6 \\ 5}[/mm]
> ; c [mm]=\vektor{7 \\ 5\\ 4 \\ 5}[/mm] ; d= [mm]\vektor{1 \\ 0\\ 0 \\ 0}[/mm]
> ; e [mm]=\vektor{1 \\ -1\\ 6 \\ 2}[/mm] ; f= [mm]\vektor{1 \\ 1\\ -6 \\ -2}[/mm]
>  
> a) Bestimme [mm]dim\mathcal{A}1, dim\mathcal{A}2,[/mm] und
> [mm]\mathcal{A}1 \cap \mathcal{A}2,[/mm] Gib Basis von [mm]\mathcal{A}1 \vee \mathcal{A}2[/mm]
> an und zeige dass sie parallel sind.

>  Mh also zuerst häng ich mal mit dr Dimension weilk im
> Internet hab ich überall nur gelesen, dass ses keine dim,
> osndern bei Matrizen

Ömm - welche Matrizen? Wovon sprichst Du?

Gruß v. Angela



> nur einen rg gibt, außerdem weß ic
> hdass es auch noch einen defekt gibt. Na gut der Rang ist
> mir klar, den berechnet man durch Umformen, bis es nicht
> mehr geht...... und alle Zeilen welche l.a. sind ergeben
> dan den Rang, aber wie kann ich nun wirklich d. dim und das
> weitere berechnen?
>  
> Danke für eure Antwort.....lg Dixi
>  
> Ich habe diese Frage in kein anderes Forum gestellt


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de