www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Dirac Delta in H_0^1
Dirac Delta in H_0^1 < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirac Delta in H_0^1: Idee
Status: (Frage) beantwortet Status 
Datum: 21:09 Fr 10.01.2014
Autor: Freaky

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Zeige, dass es genau eine Funktion $u \in H_{0}^{1}(-1,1)$ gibt, so dass
$$\int_{-1}^{1} u'(x)\phi'(x)\,dx  = \phi(0)\text{,}\qquad \text{für alle } \phi \in C_{0}^{\infty}(\Omega)\text{.}$$
Finde die Funktion $u$.\\

Hallo zusammen,
ich komme bei obiger Aufgabe nicht weiter. Existenz und Eindeutigkeit der Funktion u habe ich bereits (mit Hilfe des Riesz'schen Darstellungssatzes) gezeigt, aber beim Finden der Funktion komme ich einfach auf keinen grünen Zweig.

Mit partieller Integration sieht man, dass $-u'' = \delta$, sodass $u(x) = -\frac{1}{2}(|x|}+1)$ funktionieren würde, aber leider ist die Funktion nur in $ H^{1}(-1,1)$und nicht in $ H_{0}^{1}(-1,1)$. Auch mit Splines oder ähnlichem habe ich es schon versucht, aber stets ist es irgendwo gescheitert.
Hat vielleicht jemand eine Idee, wie man die Funktion finden kann oder wie sie aussieht?

Vielen Dank im Voraus,
Freaky

        
Bezug
Dirac Delta in H_0^1: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Sa 11.01.2014
Autor: rainerS

Hallo!

> Zeige, dass es genau eine Funktion [mm]u \in H_{0}^{1}(-1,1)[/mm]
> gibt, so dass
>  [mm]\int_{-1}^{1} u'(x)\phi'(x)\,dx = \phi(0)\text{,}\qquad \text{für alle } \phi \in C_{0}^{\infty}(\Omega)\text{.}[/mm]
>  
> Finde die Funktion [mm]u[/mm][mm] .\\[/mm]
>  Hallo zusammen,
> ich komme bei obiger Aufgabe nicht weiter. Existenz und
> Eindeutigkeit der Funktion u habe ich bereits (mit Hilfe
> des Riesz'schen Darstellungssatzes) gezeigt, aber beim
> Finden der Funktion komme ich einfach auf keinen grünen
> Zweig.
>
> Mit partieller Integration sieht man, dass [mm]-u'' = \delta[/mm],
> sodass [mm]u(x) = -\frac{1}{2}(|x|}+1)[/mm] funktionieren würde,
> aber leider ist die Funktion nur in [mm]H^{1}(-1,1)[/mm]und nicht in
> [mm]H_{0}^{1}(-1,1)[/mm].

Aber u ist durch die Voraussetzungen nur bis auf eine beliebige additive Konstante bestimmt, also geht

[mm] -\frac{1}{2}|x| +C [/mm]

ganz genauso. Du musst nur C passend wählen.

  Grüße
    Rainer



Bezug
                
Bezug
Dirac Delta in H_0^1: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:38 Sa 11.01.2014
Autor: Freaky

Hallo noch 'mal,
sorry, in meiner Frage war ein Tippfehler, es musste natürlich $u(x) =- [mm] \frac{1}{2}(|x|-1)$ [/mm] heißen. Das Problem mit dieser Funktion ist, dass $$u'(x)= [mm] \begin{cases} \frac{1}{2} & x\leq 0\text{,}\\ -\frac{1}{2} & x\geq 0\\ \end{cases} [/mm]
$$ und somit [mm] $u'(-1)\not [/mm] = 0$ und [mm] $u'(1)\not [/mm] = 0$.

Bezug
                        
Bezug
Dirac Delta in H_0^1: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Di 14.01.2014
Autor: rainerS

Hallo,

> Hallo noch 'mal,
> sorry, in meiner Frage war ein Tippfehler, es musste
> natürlich [mm]u(x) =- \frac{1}{2}(|x|-1)[/mm] heißen. Das Problem
> mit dieser Funktion ist, dass [mm][/mm]u'(x)= [mm]\begin{cases} \frac{1}{2} & x\leq 0\text{,}\\ -\frac{1}{2} & x\geq 0\\ \end{cases}[/mm]
> [mm][/mm]
> und somit [mm]u'(-1)\not = 0[/mm] und [mm]u'(1)\not = 0[/mm].

Wieso muss $u'$ auf dem Rand 0 sein? Die Voraussetzung ist doch, dass [mm] $u\in H^1_0$ [/mm] ist, also u auf dem Rand 0 ist?

  Grüße
    Rainer


Bezug
                                
Bezug
Dirac Delta in H_0^1: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:42 Di 14.01.2014
Autor: Freaky

Hallo noch 'mal,
aber [mm] $H_0^1(-1,1)$ [/mm] ist doch der Abschluss von [mm] $C_0^{\infty}(-1,1)$, [/mm] sollte dann nicht auch $u'$ auf dem Rand verschwinden?

Liebe Grüße,
Freaky

Bezug
                                        
Bezug
Dirac Delta in H_0^1: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 17.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de