www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Dirichlet Problem
Dirichlet Problem < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dirichlet Problem: Wie mach ich das?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:28 Di 23.12.2008
Autor: max3000

Aufgabe
Betrachtet werde das elliptische Dirichlet-Problem:

[mm] $-\Delta [/mm] u(x,y)=f(x,y,u(x,y))$, [mm] $(x,y)\in\Omega:=(a,b)^2$ [/mm]
u=0 auf [mm] \partial\Omega. [/mm]

Dies ist zu lösen mit dem Mehrstellenverfahren:

[mm] $1/h^2(4u_{i,j}-u_{i-1,j}-u_{i+1,j}-u_{i,j-1}-u_{i,j+1}) [/mm] = [mm] 1/12(8f_{i,j}+f_{i-1,j}+f_{i+1,j}+f_{i,j-1}+f_{i,j+1})$, i,j=1,2,\ldots,N-1 [/mm]

Man implementiere die Diskretisierung wobei die rechte Seite der Form

[mm] $f(x,y,u(x,y))=g(x,y)+e^{-u}$ [/mm]

mit g derart, dass

[mm] u(x,y)=\bruch{x(1-x)}{1+x^2}*sin(\pi*y) [/mm]

Lösung der Aufgabe ist.

Hallo,

Das Problem ist dieses [mm] e^{-u}. [/mm]
Würde die rechte Seite nicht von u abhängen, wäre die Lösung klar.
Ganz normal mit dem 5-Punkt-Differenzenstern.
Aber wie mach ich das mit [mm] e^{-u}? [/mm] Ich habe die Lösung, die rauskommen soll einfach mal in

[mm] $-\Delta u(x,y)-e^{-u}$ [/mm]

eingesetzt und komme auf mein g. Der Schritt ist klar. Aber dieses Verfahren was gegeben ist, kann ich ja nicht wirklich anwenden, wenn das u noch in f vorkommt. Die linke Seite von der Diskretisierung representiert ja nur den Laplace-Operator. Ich bin vollkommen verzweifelt und denke ich habe vielleicht die Aufgabe nicht richtig verstanden.

Kann mir bitte jemand helfen?

Vielen Dank schonmal.

        
Bezug
Dirichlet Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Di 23.12.2008
Autor: max3000

Hab grad nochmal auf die Übungshomepage geschaut.
Da steht ein Hinweis:

Es ist analytisch die Funktion g(x,y) zu bestimmen.
Nur diese wird dann dem Programm zur Verfügung stehen, d.h. es ist das nichtlineare GS

[mm] $-\Delta [/mm] u-exp(-u)=g(x,y)$

zu lösen.
Ich nehme an g diskretisiere ich dann wie die rechte Seite von der Diskretisierungsgleichung und exp? Keine Ahnung. Würd ja jetzt spontan Newtonverfahren vorschlagen, aber so richtig blicke ich hier immer noch nicht durch.

Bezug
        
Bezug
Dirichlet Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Fr 26.12.2008
Autor: max3000

Hallo,

hab es nach langem überlegen doch hinbekommen.

Der Trick war, man kommt auf

[mm] $\Delta u_{i,j} [/mm] + [mm] 1/12(8e^{-u_{i,j}}+e^{-u_{i-1,j}}+\ldots) [/mm] + [mm] 1/12(8g(x_i,y_j)+g(x_i,y_{j-1})+\ldots)=0 [/mm] $

also ein nichtlineares Gleichungssystem mit [mm] (N-1)^2 [/mm] unbekannten.
Darauf dann 6 mal Newton-Verfahren angewendet und man kommt ziemlich genau auf die Lösung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de