www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Diskrete Fouriertransformation
Diskrete Fouriertransformation < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskrete Fouriertransformation: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:08 So 06.02.2005
Autor: Hanno

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo an alle!

Ich habe einige Probleme mit der diskreten Fouriertransformation. Seien äquidistante Punkte $t_0,t_1,...,t_n$ im Zeitabstand $\Delta t$ sowie die Werte $x(t_n), 0\leq n\leq N$ eines Signales $x(t)$ gegeben, so kann das Fourier-Integral $\int_{-\infty}^{\infty} f(x) e^{-2\pi i x \omega} dx$ durch die Summe $\Delta t\summe_{n=0}^{N}{f(n\Delta t)e^{-2\pi i n\Delta t \omega}$ angenähert werden. Lässt man als Frequenzen nur die diskreten Werte $\omega_m=\frac{m}{N\Delta t}$ zu, so ergibt sich die Funktion $F\left(\frac{m}{N\Delta t}\right)=\Delta t\summe_{n=0}^{N} f(n\Delta t) e^{\frac{-2\pi i m n}{M}}$.
Für die Rücktransformation kann das Integral $\int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega x} d\omega$ durch die Summe $\frac{1}{N\Delta t}\summe_{n=0}^{N} F\left( \frac{n}{N\Delta t}\right) e^{\frac{2\pi i x n}{N\Delta t}}$ ersetzt werden (ich denke, dass das noch stimmen sollte).
Warum ist das so? Ich verstehe nicht, warum gewährleistet ist, dass diese Summe eine gute Näherung an das Integral bei der Rücktransformation ist. Denn schließlich kann es doch sein, dass die Amplituden der Frequenzen zwischen zwei der diskreten Frequenzwerten stark von diesen abweichen, und dann ist doch nicht mehr gewährleistet, dass die Summe eine gute Näherung an der INtegral ist, so meine Überlegung.

Ich beiße mir daran leider schon länger die Zähne aus und sehe meinen Denkfehler einfach nicht. Wäre klasse, wenn es jemand schnell beantworten könnte, denn nach Möglichkeit brauche ich es schon morgen - daher auch die kurze Frist.


Liebe Grüße,
Hanno

        
Bezug
Diskrete Fouriertransformation: Rückfrage und Teilantwort
Status: (Antwort) fertig Status 
Datum: 08:58 Do 10.02.2005
Autor: Stefan

Lieber Hanno!

> Für die Rücktransformation kann das Integral
> [mm]\int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega x} d\omega[/mm]
> durch die Summe [mm]\frac{1}{N\Delta t}\summe_{n=0}^{N} F\left( \frac{n}{N\Delta t}\right) e^{\frac{2\pi i x n}{N\Delta t}}[/mm]
> ersetzt werden (ich denke, dass das noch stimmen sollte).

Ich denke nicht, dass das so stimmt. Es wir über die reelle Achse integriert, aber rechts werden in $F$ nur diskrete Werte von $0$ bis [mm] $\frac{1}{\Delta t}$ [/mm] eingesetzt. Warum? Oder hat $F$ nur dort seinen Träger (wenn ja, warum?)?

Muss es nicht vielmehr [mm] $\summe_{n \in \IZ} \ldots$ [/mm] heißen oder so?

Ich muss zugeben, dass ich da nicht viel Ahnung von habe, aber mir erscheint das ziemlich seltsam.

Ansonsten wäre es ja einfach die Approximation eines uneigentlichen Riemann-Integrals durch Riemannsche Summen, wobei man genauere Konvergenzüberlegungen noch durchführen müsste.

Vielleicht kannst du zum ersten Punkt ja mal was schreiben?

Liebe Grüße
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de