Diskretes Maximumsprinzip < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei T eine (nxn)-Matrix mit lauter Zweier auf der Hauptdiagonalen und nur -1 auf den beiden Nebendiagonalen.
Es sei [mm] f=(f_{1},...,f_{n})^{t} \in \IR^{n} [/mm] gegeben und [mm] u=(u_{1},...,u_{n})^{t} \in \IR^{n} [/mm] sei die Lösung des linearen Gleichungssystems Tu=f.
Zeigen Sie: Falls [mm] f_{i} \le [/mm] 0 für alle i=1,...,n, sog gilt [mm] max_{i=1,...,n}u_{i} \le [/mm] 0 |
Hallo,
ich komm bei obiger Aufgabe nicht weiter. Wie kann ich das zeigen? Da muss ich ja das LGS irgendwie lösen und dann zeigen, dass unter gegebener Bedingung die [mm] u_{i} [/mm] alle kleiner oder gleich Null sind. Kann ich da zum Beispiel das Gesamtschrittverfahren anwenden?
Danke schon mal für Eure Hilfe!
Gruß Michi
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:37 Fr 11.12.2009 | Autor: | MichiNes |
Also ich habe mir mal eine Lösungsskizze zurechtgelegt und wollt mal fragen, ob das so theoretisch möglich ist:
Zuallererst habe ich die Matrix als L+U+D geschrieben, wobei D Diagonalmatrix ist, L eine Matrix mit nur -1 auf der unteren Nebendiagonalen, U eine Matrix mit nur -1 auf der oberen Nebendiagonalen.
Dann könnte ich ja prüfen, ob [mm] \rho(D^{-1}(L+U))<1 [/mm] ist, also ob das Gesamtschrittverfahren (oder auch Jacobi-Verfahren) konvergiert. Falls das der Fall ist, hätte ich ja als iterative Lösung des Gleichungssystems folgendes:
[mm] u_{i}^{(m+1)}=\bruch{1}{T_{ii}}(-\summe_{i=1, i\not=j}^{n}T_{i,j}u_{j}^{(m)}+f_{i})
[/mm]
Dann kann man ja verwenden, dass [mm] \summe_{i=1, i\not=j}^{n}T_{i,j}u_{j}^{(m)} [/mm] ja nur 2 Summanden hat, nämlich [mm] -u_{i-1} [/mm] und [mm] -u_{i+1}. [/mm] Außerdem ist [mm] T_{ii}=2 [/mm] für alle i [mm] \in [/mm] {1,...,n}.
Und dann kann man ja vielleicht irgendwie unter der Annahme, dass [mm] f_{i} \le [/mm] 0 zeigen, dass auch [mm] max_{i=1,...,n}u_{i} \le [/mm] 0.
Ist das der richtige Lösungsweg? Auf was muss ich dabei noch achten, was ich vielleicht hier jetzt vergessen hab?
Danke schon mal für die Hilfe!
Gruß Michi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Di 15.12.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|