www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Distributionen
Distributionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Distributionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Do 15.06.2006
Autor: Skydiver

Hallo.

Ich habe eine Frage zum Raum D der Testfunktionen, der im Zusammenhang mit den Distributionen definiert wird. Und zwar wird von den Testfunktionen aus D gefordert, dass sie auf den reellen Zahlen definiert sind, dass sie beliebig oft differenzierbar sind und nur in einem abgeschlossenen Intervall ungleich 0 sind.
Nun frage ich mich, wie eine derartige Funktion stetig sein kann. Innerhalb des abgeschlossenen Intervalls muss die Funktion ungleich 0 sein und das gilt auch für die Intervallgrenze selbst. Der rechtsseitige Grenzwert wäre also für die untere Intervallgrenze jedenfalls ungleich 0. Nähere ich mich nun von links dieser Grenze, so muss die Funktion in dem Bereich zwingend 0 sein, da der Bereich sonst auch zum Intervall gehören würde. Damit ergibt der linksseitige Grenzwert aber einen Wert gleich 0 und somit wäre die Funktion unstetig.
Kann mir das bitte jemand erklären??

Vielen Dank, mfg.

        
Bezug
Distributionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Do 15.06.2006
Autor: mathemaduenn

Hallo Skydiver,
(Edit:Hab ich doch nicht richtig gelesen [scheisskram]))
Klar muß die Funktion in den Intervallgrenzen Null sein. sonst kann die nicht stetig sein. Du brauchst aber nur einen Grenzwert zu betrachten und der muß mit dem Funktionswert übereinstimmen.
Vermutlich wird aber von Funktionen mit kompakten []Träger gesprochen. der Träger ist aber der Abschluß der Menge auf der die Funktion nicht null ist. Die Menge selbst kann (muß) offen sein.
Ein Bild wie so eine Funktion(=0 an den Grenzen) aussehen könnte:
[Dateianhang nicht öffentlich]
viele Grüße
mathemaduenn

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de