www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Doppelbruch
Doppelbruch < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelbruch: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:11 Mi 02.01.2008
Autor: ShubNiggurath

Aufgabe
[mm] \bruch{1+\bruch{4}{z}-\bruch{5}{z²}}{1+\bruch{3}{z}-\bruch{10}{z²}} [/mm]

Ich mal wieder - dieses mal meine ich alles richtig zu machen, aber irgendwie steckt da der Wurm drin, meine Vorgehensweise:

1. Schritt: Nenner suchen (Jeweils im Bruch Zähler bzw. Nenner) - wäre beide male aus meiner Sicht z², Aufgabe sähe dann wie folgt aus:
[mm] \bruch{\bruch{z²+4z-5}{z²}}{\bruch{z²+3z-10}{z²}} [/mm]

2. Schritt: Nun würde ich mit dem Kehrwert multiplizieren, da aber beide male mit z² multipliziert werden würde, kürze ich z² aufgrunddessen weg. Es bleibt stehen:
[mm] \bruch{z²+4z-5}{z²+3z-10} [/mm]

Ab hier sehe ich keine weitere Möglichkeit mehr um weiter kürzen zu können, da weder z noch eine zahl ausgeklammert werden kann. Jedoch muss als Lösung [mm] \bruch{z-1}{z-2} [/mm] rauskommen. Bräuchte somit wiedermal einen kleinen Tipp wo der Ziegenbock den Honig hat! Vielen Dank,

MfG Shub

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Doppelbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mi 02.01.2008
Autor: schachuzipus

Hallo Shub,


>
> [mm]\bruch{1+\bruch{4}{z}-\bruch{5}{z²}}{1+\bruch{3}{z}-\bruch{10}{z²}}[/mm]
>  Ich mal wieder - dieses mal meine ich alles richtig zu
> machen, aber irgendwie steckt da der Wurm drin, meine
> Vorgehensweise:
>  
> 1. Schritt: Nenner suchen (Jeweils im Bruch Zähler bzw.
> Nenner) - wäre beide male aus meiner Sicht z², Aufgabe sähe
> dann wie folgt aus:
>  [mm]\bruch{\bruch{z²+4z-5}{z²}}{\bruch{z²+3z-10}{z²}}[/mm]
>  
> 2. Schritt: Nun würde ich mit dem Kehrwert multiplizieren,
> da aber beide male mit z² multipliziert werden würde, kürze
> ich z² aufgrunddessen weg. Es bleibt stehen:
>  [mm]\bruch{z²+4z-5}{z²+3z-10}[/mm] [daumenhoch]

sehr gut so, das stimmt !!

>  
> Ab hier sehe ich keine weitere Möglichkeit mehr um weiter
> kürzen zu können, da weder z noch eine zahl ausgeklammert
> werden kann. Jedoch muss als Lösung [mm]\bruch{z-1}{z-2}[/mm]
> rauskommen. Bräuchte somit wiedermal einen kleinen Tipp wo
> der Ziegenbock den Honig hat! Vielen Dank,

Na mal suchen ;-)

Bestimme die Nullstellen von Zähler und Nenner (mit der p/q-Formel o.ä.), dann kannst du Zähler und Nenner jeweils als Produkt von 2 Linearfaktoren schreiben, von denen du nachher sicher einen rauskürzen kannst und so auf die gewünschte Lösung kommst

> MfG Shub
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß

schachuzipus

Bezug
                
Bezug
Doppelbruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Mi 02.01.2008
Autor: ShubNiggurath

Also wenn ich die P/Q Formel anwende, würde ich ja im Zähler als z1=7 und z2=-11 erhalten (sofern ich mich da nicht verrechnet habe)  und im Nenner z1=5 und als z2=-2

Wie genau müsste ich hiermit denn jetzt weiterarbeiten. Also das man da mit der PQ Formel arbeiten muss bei den Brüchen war mir bis gerade neu, von daher benötige ich da noch ein wenig Starthilfe :) Danke!

Bezug
                        
Bezug
Doppelbruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Mi 02.01.2008
Autor: ShubNiggurath

sorry im zähler natürlich nach der p/q formel: z1= -5 und z2= 1

Bezug
                        
Bezug
Doppelbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 02.01.2008
Autor: schachuzipus

Hallo nochmal,

du scheinst dich verrechnet zu haben...

Ich erhalte im Zähler die Nullstellen [mm] $z_1=1, z_2=-5$ [/mm] und im Nenner [mm] $z_1=2, z_2=-5$ [/mm]

Also kannst du [mm] $\frac{z^2+4z-5}{z^2+3z-10}$ [/mm] schreiben als [mm] $\frac{(z-1)\cdot{}(z+5)}{(z-2)\cdot{}(z+5)}$ [/mm]

Da kannst du dann $z+5$ kürzen und kommst auf die gegebene Lösung


LG

schachuzipus

Bezug
                                
Bezug
Doppelbruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Mi 02.01.2008
Autor: ShubNiggurath

achso funktioniert das :O Menschenskinder :D das kannte ich noch gar nicht - wieder was gelernt. Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de