www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Doppelintegral
Doppelintegral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelintegral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:53 Mi 05.03.2008
Autor: user0009

Aufgabe
[mm] \integral_{}^{}{\integral_{B}^{}f(x,y) dxdy} [/mm]
B = Dreieck mit den Ecken (0,1),(0,-1),(1,0)

Wie komme ich auf das richtige B?

Ich habe schon einige Ansätze für das B versucht aber komme irgendwie nie auf ein "normales" Ergebnis.

1) B={(x,y)eR²|0<=x<=1; x-1 <=y<=x+1}

2) B={(x,y)eR²|0<=x<=1;-1 <=y<=1}

3) B={(x,y)eR²|0<=x<=1; -1 <=y<=x+1}

Ergebnisse: zu 1) 1/2  2) 4/15 3) -3/20

Das Ergebnis 1 kommt mir zu gross vor, das 2er zu seltsam und zu 3 ein Minus kann nicht raus kommen.

Was mache ich bei der Bestimmung von B falsch?
Ich gehe immer von der Annahme aus, dass ich eine Fixachse wählen muss. In diesem Fall habe ich x genommen und x eben von 0 bis 1 eingegrenzt, wie man es aus den Koordinaten sehen kann.
Da y von x Abhängig ist, muss ich um y bestimmen zu können x mit einbeziehen. Darum habe ich zur unteren y Grenze und zur oberen y Grenze jeweils x dazu gezählt. Aber ich vermute das ist falsch.
Kann mir jemand weiter helfen?


        
Bezug
Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Mi 05.03.2008
Autor: leduart

Hallo
> [mm]\integral_{}^{}{\integral_{B}^{}f(x,y) dxdy}[/mm]
>  B = Dreieck
> mit den Ecken (0,1),(0,-1),(1,0)
>  Wie komme ich auf das richtige B?

Was ist denn f(x,y)?

> Ich habe schon einige Ansätze für das B versucht aber komme
> irgendwie nie auf ein "normales" Ergebnis.
>  
> 1) B={(x,y)eR²|0<=x<=1; x-1 <=y<=x+1}

das ist richtig

>
> 2) B={(x,y)eR²|0<=x<=1;-1 <=y<=1}

falsch, das wäre ja ein Rechteck

>
> 3) B={(x,y)eR²|0<=x<=1; -1 <=y<=x+1}

das wäre ein Rechteck unter der x-Achs, ein Dreieck darüber.
Wenn du nur  
[mm] \integral_{}^{}{\integral_{B}^{} dxdy} [/mm]
ausrechnen willst kannst du die Fläche des Dreiecks ja auch selbst kontrollieren. sie muss 1 sein
wie du auf 1/2 kommst seh ich nicht, das müsstest du vormachen.
Integral über y an den Grenzen in 1) ergibt doch 2? (x+1)-(x-1)?

> Ergebnisse: zu 1) 1/2  2) 4/15 3) -3/20

auch die Ergebnisse für die Gebiete 2) und 3) sind falsch.

>  
> Das Ergebnis 1 kommt mir zu gross vor, das 2er zu seltsam
> und zu 3 ein Minus kann nicht raus kommen.
>  
> Was mache ich bei der Bestimmung von B falsch?
>  Ich gehe immer von der Annahme aus, dass ich eine Fixachse
> wählen muss. In diesem Fall habe ich x genommen und x eben
> von 0 bis 1 eingegrenzt, wie man es aus den Koordinaten
> sehen kann.

Ich versteh nicht, was eine "Fixachse" sein soll x und y Achse sind immer fix!

>  Da y von x Abhängig ist, muss ich um y bestimmen zu können
> x mit einbeziehen. Darum habe ich zur unteren y Grenze und
> zur oberen y Grenze jeweils x dazu gezählt. Aber ich
> vermute das ist falsch.

Das versteh ich nicht, du hast doch mit x-1 <=y<=x+1 x einbezogen.
Du musst dir das richtig vorstellen, du teilst, wenn du erst über y, dann x integrierst das Gebiet B in Streifen der Breite dx ein, deren Fäche rechnest du aus, inden du sie in Stückchen der größe dy einteilst, die du aufsummierst. danach  addierst du dann all die Streifen  auf.
Gruss leduart

Bezug
                
Bezug
Doppelintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mi 05.03.2008
Autor: user0009

Das habe ich leider vergessen: f(x,y) = x^2y dxdy

Ok jetzt ist mir das auch klar mit dem B. Danke für die Erklärung.

lg user0009


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de