Doppelintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] f:[-1,2]\times [1,4]-->\IR [/mm] sei gegeben als
[mm] f(x,y)=\begin{cases} xy & x^2 \le y \le x+2 \\ 0 & sonst \end{cases}
[/mm]
Berechnen Sie:
[mm] \integral_{-1}^{2}{\integral_{1}^{4}{f(x,y) dy} dx} [/mm] |
Ich habe da ein bisschen rumgerechnet; komme aber nie auf das ergebnis das derive mir liefert. Ich denke ich muss irgendwie die integrationsgrenzen modifizieren.
|
|
|
|
> [mm]f:[-1,2]\times [1,4]-->\IR[/mm] sei gegeben als
>
> [mm]f(x,y)=\begin{cases} xy & x^2 \le y \le x+2 \\ 0 & sonst \end{cases}[/mm]
>
>
> Berechnen Sie:
>
> [mm]\integral_{-1}^{2}{\integral_{1}^{4}{f(x,y) dy} dx}[/mm]
> Ich
> habe da ein bisschen rumgerechnet; komme aber nie auf das
> ergebnis das derive mir liefert. Ich denke ich muss
> irgendwie die integrationsgrenzen modifizieren.
Ja, etwas in dieser Art ist nötig, weil der Integrand $f(x,y)$ mittels einer Fallunterscheidung definiert ist. Im Grunde solltest Du das Produkt [mm] $x\cdot [/mm] y$ nur über das Gebiet des [mm] $\IR^2$ [/mm] integrieren, in dem $f(x,y)$ nicht als $=0$ definiert ist. Skizziere also zuerst einmal dieses Gebiet, etwa so
[Dateianhang nicht öffentlich]
Blau der Integrationsbereich. Das Produkt [mm] $x\cdot [/mm] y$ musst Du nun nur über das in diesem Integrationsbereich zwischen den Graphen [mm] $y=x^2$ [/mm] und $y=x+2$ liegende Flächenstück integrieren (an anderen Stellen des Integrationsbereiches ist $f(x,y)$ ja gleich $0$):
[mm]\integral_{-1}^{2}{\integral_{1}^{4}{f(x,y) dy} dx}=\integral_{-1}^1\integral_1^{x+2} x\cdot y\; dy\;dx+\integral_1^2\integral_{x^2}^{x+2}x\cdot y\; dy\;dx[/mm]
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
ahhh...vielen dank schonmal...hat mir sehr geholfen. Gibt es aber da irgendwelche tricks wie man das ohne zeichnung sehen kann? wenn ich z.B. 4 Integrale hab, kann ich das ja nicht mehr zeichnen.
|
|
|
|
|
> ahhh...vielen dank schonmal...hat mir sehr geholfen. Gibt
> es aber da irgendwelche tricks wie man das ohne zeichnung
> sehen kann?
"Sehen" impliziert doch eine Art von Veranschaulichung, nicht? Deshalb kann ich Dir nur empfehlen, blosse Rechnung, sofern möglich, durch solche Veranschaulichungen zu ergänzen.
Es ist ja auch nicht so, dass man sich ausschliesslich auf eine Skizze stützen sollte: die Skizze steuert und koordiniert allenfalls die Berechnung. Z.B: Wo, genau, schneidet die Parabel den unteren Rand des Integrationsbereiches? Eine solche Frage (die bei Deiner Aufgabe zwar trivial zu beantworten war) beantwortet man besser mittels einer exakten Rechnung: die hier zur Wahl der oberen Grenze des ersten bzw. der unteren Grenze des zweiten Teilintegrals geführt hat.
In manchen Fällen wird Beschreibung der Integrationsgrenzen der inneren Integrale auch erheblich einfacher, wenn man die Reihenfolge der Integrationen vertauscht - oder wenn man zu anderen Koordinaten übergeht (wie Polarkoordinaten/Kugelkoordinaten oder Zylinderkoordinaten).
> wenn ich z.B. 4 Integrale hab, kann ich das ja
> nicht mehr zeichnen.
In einem solchen Falle wäre der Integrationsbereich 4-dimensional: eher nicht mehr so leicht zu veranschaulichen, um es einmal vorsichtig auszudrücken. Wenn dann der Integrand auch noch mittels eines Sammelsuriums von Fallunterscheidungen definiert ist, kann's definitiv grimmig werden.
Kurz: es gibt zwar gewisse Tricks, aber es gibt leider nicht ein paar wenige Tricks, mit denen alle derartigen Integrationsprobleme zu lösen sind. Ich möchte einmal vermuten, dass Du bei weiteren Übungsaufgaben auf Probleme stossen wirst, die Dich nach und nach mit den wichtigsten Tricks vertraut machen.
|
|
|
|