Doppelintegrale Einführung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:08 Mo 22.10.2012 | Autor: | Benja91 |
Guten Tag,
ich habe die Frage in keinem anderen Forum gestellt. Wir haben heute in der Uni mit Doppelintegralen begonnen. Die Herleitung ist mir eigentlich klar, aber ich verstehen nicht, warum ich zwei Integrale berechnen muss. Warum ist das Volumen eines Körpers das Integral der Querschnittsfläche Q(x) nach x?
Vielen Dank für eure Hilfe.
Gruß
Benja
|
|
|
|
Hallo,
> ich habe die Frage in keinem anderen Forum gestellt. Wir
> haben heute in der Uni mit Doppelintegralen begonnen. Die
> Herleitung ist mir eigentlich klar, aber ich verstehen
> nicht, warum ich zwei Integrale berechnen muss. Warum ist
> das Volumen eines Körpers das Integral der
> Querschnittsfläche Q(x) nach x?
das ist eine tiefgründige Frage. Es bleibt ja auch nicht bei den Doppelintegralen, mir sind aus den Anwendungen teilweise Vierfachintegrale bekannt.
Ein Volumen per Doppelintegral zu berechnen, ist in ähnlicher Weise eigentlich nur ein zufälligerweise anschauliches Beispiel für die Anwendung eines Prinzips. so wie es die Berechnung der Fläche unter einem Graphen per einfachem Riemann-Integral ist.
Wie du schon gesagt hast, beim Volumen werden unendlich viele unendlich dünne Scheiben aufsummiert (wenn man deren Fläche durch ein eindimensionales Integral darstellen kann, dann führt eine erneute Integration zum Volumen).
Generell summiert ein Integral unendlich viele infinetisimale Werte auf, und das ist nicht so leicht zu verstehen, wie es in der Schule manchmal den Anschein hat.
Also wenn wir dein Beispiel nochmal zusammenfassen: für jede Querschnittsfläche werden 'infinitesimal dünne' Linienelemente, deren Länge durch eine Funktion gegeben ist, aufsummiert (inneres Integral). Die so entstehenden Flächen sind infinitesimal dünne Scheiben, wenn man sie aufsummiert, entsteht das gesuchte Volumen.
Es ist ein wenig so wie bei einer sehr dünn geschnittenen Salami, bei der man die Fläche eines Wursträdles am frühen Morgen schon durch ein Integral berechnet hat.
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:04 Do 25.10.2012 | Autor: | Benja91 |
Hallo,
Super! Vielen Dank für die sehr anschauliche Erklärung.
Viele Grüße
Benja
|
|
|
|