www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Doppelte Eigenwerte
Doppelte Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelte Eigenwerte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:57 Fr 11.04.2014
Autor: MeineKekse

Aufgabe
Gegeben sei die reelle 3x3 Matrix

[mm] A = \begin{pmatrix} -1 & 1 & 2 \\ -6 & 6 &10 \\ 9 &-3 & -4 \end{pmatrix} [/mm] mit dem charakteristischen Polynom [mm] P_A(\lambda) = -1\lambda^3 +\lambda^2 +8\lambda -12 [/mm]

Bestimmen Sie die Eigenwerte.



Hi, also zunächst setze ich das Polynom gleich 0, nach etwas ausklammern "errate" ich die beiden Eigenwerte -3 und 2. Alternativ nach herausfinden des Eigenwertes -3, komme ich per Polynomdivision auf [mm]-\lambda^2 +4\lambda -4[/mm]. Setze ich dieses gleich 0 so erhalte ich als zweiten Eigenwert wieder 2. Das Problem laut Lösung, besitzt diese Matrix den Eigenwert 2 gleich 2 mal. Meine Frage woher, weiß ich, dass diese Matrix mehr als 2 Eigenwerte hat und wenn ich das herausgefunden habe, wie komme ich dann darauf, dass der Eigenwert 2 hier doppelt vorkommt?

Danke schonmal
Gruß Meine Kekse

        
Bezug
Doppelte Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Fr 11.04.2014
Autor: HJKweseleit


> Gegeben sei die reelle 3x3 Matrix
>
> [mm] A = \begin{pmatrix} -1 & 1 & 2 \\ -6 & 6 &10 \\ 9 &-3 & -4 \end{pmatrix}[/mm]
> mit dem charakteristischen Polynom [mm]P_A(\lambda) = -1\lambda^3 +\lambda^2 +8\lambda -12[/mm]
>  
> Bestimmen Sie die Eigenwerte.
>  
>
> Hi, also zunächst setze ich das Polynom gleich 0, nach
> etwas ausklammern "errate" ich die beiden Eigenwerte -3 und
> 2. Alternativ nach herausfinden des Eigenwertes -3, komme
> ich per Polynomdivision auf [mm]-\lambda^2 +4\lambda -4[/mm]. Setze
> ich dieses gleich 0 so erhalte ich als zweiten Eigenwert
> wieder 2. Das Problem laut Lösung, besitzt diese Matrix
> den Eigenwert 2 gleich 2 mal. Meine Frage woher, weiß ich,
> dass diese Matrix mehr als 2 Eigenwerte hat und wenn ich
> das herausgefunden habe, wie komme ich dann darauf, dass
> der Eigenwert 2 hier doppelt vorkommt?


Widerspruch! Ein Polynom 3. Grades hat im Komplexen genau 3 Nullstellen, die Matrix also höchstens 3 Eigenwerte. Wenn du herausfindest, dass sie mehr als 2 Eigenwerte - sprich: mehr als zwei verschiedenen Nullstellen im char. Polynom - hat, muss sie genau drei verschiedene Eigenwerte haben, und keiner kann doppelt vorkommen.

Du hast deine Frage doch schon selbe beantwortet: Du findest heraus, welche Nullstellen das Polynom hat und welche dabei doppelt vorkommen.

Beispiel:

[mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} [/mm]

hat die Eigenwerte 1, 2 und 3,


[mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} [/mm]
hat die Eigenwerte 1 und 2, aber 2 doppelt
und


[mm] \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} [/mm]
hat den Eigenwert 2 dreifach.

>  
> Danke schonmal
> Gruß Meine Kekse


Bezug
        
Bezug
Doppelte Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 06:30 Sa 12.04.2014
Autor: angela.h.b.


> Gegeben sei die reelle 3x3 Matrix
>
> [mm] A = \begin{pmatrix} -1 & 1 & 2 \\ -6 & 6 &10 \\ 9 &-3 & -4 \end{pmatrix}[/mm]
> mit dem charakteristischen Polynom [mm]P_A(\lambda) = -1\lambda^3 +\lambda^2 +8\lambda -12[/mm]
>  
> Bestimmen Sie die Eigenwerte.

> also zunächst setze ich das Polynom gleich 0,
> nach etwas ausklammern "errate" ich die beiden Eigenwerte -3 und 2

Hallo,

wenn Du das erraten hast, weißt Du, daß [mm] P_A(\lambda)=(\lambda +3)(\lambda-2)*(weiterer \quad [/mm] Linearfaktor),

und den fehlenden Linearfaktor (und damit die dritte Nullstelle) bekommst Du durch Polynomdivision.


>Alternativ nach herausfinden des Eigenwertes -3, komme

> ich per Polynomdivision auf [mm]-\lambda^2 +4\lambda -4[/mm].


Genau.

Jetzt weißt Du:

[mm] P_A(\lambda)=(\lambda [/mm] - [mm] (-3))(-\lambda^2 +4\lambda [/mm] -4)

[mm] =-(\lambda [/mm] - [mm] (-3))(\lambda^2 -4\lambda [/mm] +4)


> Setze
> ich dieses gleich 0 so erhalte ich als zweiten Eigenwert
> wieder 2.

Wenn Du die quadratische Gleichung [mm] \lambda^2 -4\lambda [/mm] +4 löst, bekommst Du
[mm] x_1=2 [/mm] und [mm] x_2=2, [/mm] also die doppelte Nullstelle 2.
Also ist [mm] \lambda^2 -4\lambda +4=(x-2)^2. [/mm]


Somit ist [mm] P_A(\lambda)=-(\lambda +3)(\lambda-2)^2, [/mm]

und wir haben eine einfache Nullstelle bei x=3- und eine doppelte bei x=2.

LG Angela



> Das Problem laut Lösung, besitzt diese Matrix
> den Eigenwert 2 gleich 2 mal. Meine Frage woher, weiß ich,
> dass diese Matrix mehr als 2 Eigenwerte hat und wenn ich
> das herausgefunden habe, wie komme ich dann darauf, dass
> der Eigenwert 2 hier doppelt vorkommt?
>  
> Danke schonmal
> Gruß Meine Kekse


Bezug
        
Bezug
Doppelte Eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:37 Sa 12.04.2014
Autor: MeineKekse

Super vielen Dank ihr beiden, habs jetzt verstanden :)

Gruß
MeineKekse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de