Drehmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:24 Fr 07.03.2008 | Autor: | Rutzel |
Aufgabe | Welches sind die reellen Eigenwerte einer Drehung im [mm] \IR^3 [/mm] um den Winkel [mm] \bruch{\pi}{2} [/mm] bzw. [mm] \pi [/mm] |
Hallo,
ich habe zunächst ein Problem damit, dass in dieser Aufgabe nicht angegeben ist, um welche Achse gedreht wird.
Ich habe also mal für jede einzelne der drei Achsen reelle Eigenwerte ausgerechnet: (drehmatrizen siehe hier: http://de.wikipedia.org/wiki/Rotationsmatrix)
[mm] \pi [/mm] :
1
[mm] \bruch{\pi}{2}:
[/mm]
-1,1
es sind bei jeder drei Drehungen die gleichen Eigenwerte. Es liegt also nahe zu vermuten, dass bei jeder Drehung dies die Eigenwerte sind.
Kann man das irgendwie begründen? Habe ich irgendwo eine Definition / einen Satz übersehen, die/der besagt, dass Drehungen spezielle Eigenwerte haben (nämlich 1 und -1).
oder lässt sich eine Drehung allgemeiner darstellen, als nur um eine Achse?
Gruß,
Rutzel
|
|
|
|
Hallo,
> Kann man das irgendwie begründen? Habe ich irgendwo eine Definition / einen Satz übersehen, die/der besagt, dass Drehungen spezielle Eigenwerte haben (nämlich 1 und -1).
Nun, überleg mal, was die Definition eines Eigenwerts [mm] $\lambda$ [/mm] zu einer Matrix $A$ bedeutet: Es existiert ein Vektor [mm] $\vec{v}$, [/mm] so dass gilt: [mm] $A*\vec{v} [/mm] = [mm] \lambda*\vec{v}$.
[/mm]
In Worten: Wenn ich meinen ()Vektor [mm] $\vec{v}$ [/mm] mit der Matrix $A$ multipliziere, dann entspricht dies einer Streckung dieses Vektors um den Faktor [mm] $\lambda$.
[/mm]
Wird bei einer Drehung die Länge des gedrehten Vektors verändert? Nein! Also ist der Betrag der Streckung schon mal 1. Da bei einer Drehung um 180° der Vektor gespiegelt wird, kommt hier eine Streckung um -1 dazu.
> oder lässt sich eine Drehung allgemeiner darstellen, als nur um eine Achse?
Du meinst "als nur um eine Koodinatenachse des zugrundeliegenden Koordinatensystems"? Nun, schau dir z.B. die Rodriguez-Formel an. Hier kannst du die Rotationsmatrix um eine beliebig im [mm] $\IR^3$ [/mm] liegende Achse berechnen (ist dort im letzten Satz zusammengefasst).
Gruß
Martin
|
|
|
|