www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Drehmatrix und Eigenwerte
Drehmatrix und Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehmatrix und Eigenwerte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:45 Mi 19.03.2014
Autor: Babybel73

Hallo zusammen

Brauche eure Hilfe bei folgender Aufgabe
Welche Eigenwerte hat die Matrix A, die die Drehungen von [mm] \IR^3 [/mm] um den Winkel [mm] \alpha [/mm] um eine Achse v beschreibt?

Also in der Vorlesung haben wir aufgeschrieben, dass z.B. für [mm] v=e_3 [/mm] die Drehmatrix so aussieht:
[mm] \pmat{ cos \alpha & - sin \alpha & 0 \\ sin \alpha & cos \alpha & 0 \\ 0 & 0 & 0 } [/mm]

Wie soll ich dies nun für ein allgemeines v aufschreiben?

Habe für [mm] v=e_3 [/mm] das char. Polynom berechnet...aber bin dann irgendwie auch nicht wirklich weiter gekommen...

Kann mir jemand einen Tipp geben?


        
Bezug
Drehmatrix und Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Mi 19.03.2014
Autor: fred97


> Hallo zusammen
>  
> Brauche eure Hilfe bei folgender Aufgabe
>  Welche Eigenwerte hat die Matrix A, die die Drehungen von
> [mm]\IR^3[/mm] um den Winkel [mm]\alpha[/mm] um eine Achse v beschreibt?
>  
> Also in der Vorlesung haben wir aufgeschrieben, dass z.B.
> für [mm]v=e_3[/mm] die Drehmatrix so aussieht:
> [mm]\pmat{ cos \alpha & - sin \alpha & 0 \\ sin \alpha & cos \alpha & 0 \\ 0 & 0 & 0 }[/mm]



So sieht die nicht aus, sondern so:

[mm]\pmat{ cos \alpha & - sin \alpha & 0 \\ sin \alpha & cos \alpha & 0 \\ 0 & 0 & 1 }[/mm]


>  
> Wie soll ich dies nun für ein allgemeines v aufschreiben?

Schau mal hier:

http://de.wikipedia.org/wiki/Drehmatrix


>
> Habe für [mm]v=e_3[/mm] das char. Polynom berechnet...aber bin dann
> irgendwie auch nicht wirklich weiter gekommen...

Zeig mal , was Du gemacht hast.

FRED

>
> Kann mir jemand einen Tipp geben?
>  


Bezug
                
Bezug
Drehmatrix und Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 19.03.2014
Autor: Babybel73


> > Hallo zusammen
>  >  
> > Brauche eure Hilfe bei folgender Aufgabe
>  >  Welche Eigenwerte hat die Matrix A, die die Drehungen
> von
> > [mm]\IR^3[/mm] um den Winkel [mm]\alpha[/mm] um eine Achse v beschreibt?
>  >  
> > Also in der Vorlesung haben wir aufgeschrieben, dass z.B.
> > für [mm]v=e_3[/mm] die Drehmatrix so aussieht:
> > [mm]\pmat{ cos \alpha & sin \alpha & 0 \\ sin \alpha & cos \alpha & 0 \\ 0 & 0 & 0 }[/mm]
>  
>
>
> So sieht die nicht aus, sondern so:
>  
> [mm]\pmat{ cos \alpha & - sin \alpha & 0 \\ sin \alpha & cos \alpha & 0 \\ 0 & 0 & 1 }[/mm]


Ja hast natürlich recht, habe mich verschrieben.

>  
>
> >  

> > Wie soll ich dies nun für ein allgemeines v aufschreiben?
>
> Schau mal hier:
>  
> http://de.wikipedia.org/wiki/Drehmatrix
>  
>

Also dann sieht die allgemeine Matrix so aus:

[mm] \pmat{ v_1^2 (1-cos \alpha) + cos \alpha & v_1v_2(1-cos \alpha)- v_3 sin \alpha & v_1v_3(1-cos \alpha) + v_2 sin \alpha \\ v_2v_1(1-cos \alpha) + v_3 sin \alpha & v_2^2(1-cos \alpha) + cos \alpha & v_2v_3(1-cos \alpha)-v_1 sin \alpha \\ v_3v_1(1-cos \alpha)-v_2 sin \alpha & v_3v_2(1-cos \alpha)+v_1 sin \alpha & v_3^2(1-cos \alpha)+cos \alpha } [/mm]


> >
> > Habe für [mm]v=e_3[/mm] das char. Polynom berechnet...aber bin dann
> > irgendwie auch nicht wirklich weiter gekommen...
>  
> Zeig mal , was Du gemacht hast.
>  

Also ich habe einfach für [mm] v=e_3 [/mm] folgendes berechnet:
[mm] p_A(\lambda)=det(A-\Lambda*E)= -\lambda^3+(1+2*cos \alpha)*\lambda^2-(2cos \alpha +cos^2 \alpha [/mm] + sin [mm] \alpha)*\lambda [/mm] + 1 = 0

Aber dies für die obige Matrix zu machen, ist ja ganz schön aufwändig und ich denke es sollte einen kürzeren Weg geben??

> FRED
> >
> > Kann mir jemand einen Tipp geben?
> >  

>  


Bezug
                        
Bezug
Drehmatrix und Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Mi 19.03.2014
Autor: leduart

Hallo
1- das charakteristische Polynom so auszumultiplizieren ist sehr ungeschickt, die Nullstellen sind so kaum zu finden. also schreib es als [mm] (1-\lambda*(....) [/mm]
2. Wenn man um eine Achse dreht, kann man eigentlich sagen, welche Vektoren fest bleiben. Streck dienen Zeigefinger in irgendeiner Richtung, di anderen Finger beliebige Richtungen. jetzt dreh deine Hand um den Zeigefinger, welcher Vektor bleibt fest? Welchen Eigenwert muss er haben?
jetzt bestätige deine Erkenntnis indem du A*v bildest
Gruss leduart.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de