www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Drehmatrizen
Drehmatrizen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Mi 22.10.2008
Autor: stompi

Ich habe folgendes Problem:

Ein Vektor W ist definiert über eine Drehmatrix, die ihn aus der Koordinatenachse [1 0 0] des Koordinatensystems S herausdreht.
Die Drehmatrix wird durch Multiplikation von 3 Drehmatrizen, jeweils um die z, die neue y und dann um die endgültige x-Achse erzeugt.
[mm] Drehmatrix_g [/mm] = [mm] Drehmatrix_x [/mm] * [mm] Drehmatrix_y [/mm] * [mm] Drehmatrix_z [/mm]

Außerdem ist eine Drehmatrix (genauso erzeugt, aber andere Werte) gegeben, die das Koordinatensystem B in das Koordinatensystem S dreht.

So weit habe ich das Problem schon "vereinfacht".
Wie bekomme ich den Vektor W in den Koordinaten des Koordinatensystems B?
Ich habe mir überlegt, dass ich erst die Koordinaten von W in S berechne:
[mm] W=Drehmatrix_g*[1 [/mm] 0 [mm] 0]^T [/mm]
Aber wie bekomme ich die Koordinaten dann in B?
Oder würdet ihr erst die Drehmatrizen "zusammenfassen"?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Drehmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Mi 22.10.2008
Autor: angela.h.b.

Hallo,

[willkommenmr].

gib' doch mal die genaue Aufgabenstellung mit Text, Matrizen und Zahlen mit an.

(Leute, die so tumb sind wie ich, können mit sowas  besser umgehen.)

Gruß v. Angela

Bezug
                
Bezug
Drehmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Mi 22.10.2008
Autor: stompi

Danke :)
Das ist keine Übungsaufgabe, sondern ich soll das programmieren.

Es geht um ein Model eines Sensors.
Es muss unter anderem die Richtung des Sensors (W) in Koordinaten von B bestimmt werden.
Der Sensor ist gegenüber dem Koordinatensystem S verdreht. (deswegen nicht gleich als Angabe in Koordinaten, sondern der Umweg über die Drehmatrix, aber man könnte ja die Koordinaten in S leicht berechnen, falls mein Ansatz dabei stimmt)

Dieses Koordinatensystem S ist aber gegenüber dem Koordinatensystem B auch verdreht.

Ist es dadurch verständlicher geworden?

Ich versuche es nochmal in Formlen zu fassen:

Vektor im Koordinatensystem S:
[mm] \vektor{x \\ y \\ z} [/mm] = [mm] \pmat{ a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 } [/mm] * [mm] \vektor{1 \\ 0 \\ 0} [/mm]
Er hat also fast die Richtung der X-Achse, ist aber doch nicht gleich.


Drehmatrix, die die Abweichung von S und B bestimmt:
[mm] Drehmatrix2=\pmat{ b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 } [/mm]
Ich weiß nicht, wie ich das anschaulich darstellen kann.

Wenn:
X-Achse von S in B-Koordinaten = Drehmatrix2  * [mm] \vektor{1 \\ 0 \\ 0} [/mm]
ist dann auch:
[mm] Vektor_i_n_B [/mm] = Drehmatrix * [mm] Vektor_i_n_S [/mm]
?

Hoffe, dass es sich damit klärt.

Bezug
        
Bezug
Drehmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Do 23.10.2008
Autor: rainerS

Hallo!

> Ich habe folgendes Problem:
>
> Ein Vektor W ist definiert über eine Drehmatrix, die ihn
> aus der Koordinatenachse [1 0 0] des Koordinatensystems S
> herausdreht.
>  Die Drehmatrix wird durch Multiplikation von 3
> Drehmatrizen, jeweils um die z, die neue y und dann um die
> endgültige x-Achse erzeugt.
>  [mm]Drehmatrix_g[/mm] = [mm]Drehmatrix_x[/mm] * [mm]Drehmatrix_y[/mm] * [mm]Drehmatrix_z[/mm]
>  
> Außerdem ist eine Drehmatrix (genauso erzeugt, aber andere
> Werte) gegeben, die das Koordinatensystem B in das
> Koordinatensystem S dreht.
>  
> So weit habe ich das Problem schon "vereinfacht".
>  Wie bekomme ich den Vektor W in den Koordinaten des
> Koordinatensystems B?
> Ich habe mir überlegt, dass ich erst die Koordinaten von W
> in S berechne:
>  [mm]W=Drehmatrix_g*[1[/mm] 0 [mm]0]^T[/mm]
>  Aber wie bekomme ich die Koordinaten dann in B?
>  Oder würdet ihr erst die Drehmatrizen "zusammenfassen"?

Wenn du eine Drehmatrix R hast, die das Koordinatensystem B in S dreht, kann transformiert sich ein Koordinatentripel eines Vektors W in B mit der transponierten Matrix [mm] $R^T=R^{-1}$ [/mm] in das entsprechende Koordinatentripel in S.

Das ergibt sich einfach daraus, dass der Vektor im gedrehten Koordinatensystem als abstrakter Vektor derselbe ist, daher muss die Transformation der Koordinaten genau entgegengesetzt der Drehung des Koordinatensystem erfolgen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Drehmatrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:42 Mo 27.10.2008
Autor: stompi

Das Thema ist anfangs etwas kompliziert, aber ich denke, jetzt habe ich es verstanden. Hab auch noch Wiki usw. durchgewälzt.

Danke für die Hilfe :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de