www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Drehung um Winkel
Drehung um Winkel < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Drehung um Winkel: Determinante
Status: (Frage) beantwortet Status 
Datum: 23:15 Mi 26.10.2011
Autor: theresetom

Eingabefehler: "\begin" und "\end" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\begin" und "\end" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\begin" und "\end" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Beweisen Sie det ( Ax,Ay) = det (x,y)
Unter x,y sind vektorstriche
A = $\begin {pmatrix} \cos \beta & -\sin \beta \\\sin \beta & \cos \beta \end {pmatrix}$

Ax =  $\begin {pmatrix} x_1 \cdot \cos \beta & -x_2 \cdot \sin \beta \\ x_1 \cdot \sin \beta & x_2 \cdot \cos \beta \end {pmatrix}$

Ay=  $\begin {pmatrix} y_1 \cdot \cos \beta & -y_2 \cdot \sin \beta \\ y_1 \cdot \sin \beta & y_2 \cdot \cos \beta \end {pmatrix}$
Oder ist das jeweils nur eine spalte mit + bzw. - dazwischen?

det (Ax,Ay)=
$(x_1 \cdot \cos \beta -x_2 \cdot \sin \beta *)( y_1 \cdot \sin \beta + y_2 \cdot \cos \beta) - ( x_1 \cdot \sin \beta + x_2 \cdot \cos \beta) * (y_1 \cdot \cos \beta -y_2 \cdot \sin \beta )$

Jetzt muss ich jeweils was rausheben.
$x_1*y_1 * ((\cos \beta * \sin \beta) +( -\sin \beta *-\cos \beta))$
+ $ -x_1*x_2 ((\cos \beta * \sin \beta +( - - \sin \beta *-\cos \beta))$  
+ 0
0-> da das andere mit sin und cos immer 0 ergab.

Ist es ganz falsch? -Wahrscheinlich- ;(Wo sind meine Fehler?Beim rausheben ist glaub ich einiges schief gegangen! Wie gehts weiter?

        
Bezug
Drehung um Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 Mi 26.10.2011
Autor: Fulla

Hallo theresetom,

> Beweisen Sie det ( Ax,Ay) = det (x,y)
>  Unter x,y sind vektorstriche
>  A = [mm]\begin {pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end {pmatrix}[/mm]
>  
> Ax =  [mm]\begin {pmatrix} x_1 \cdot \cos \beta & -x_2 \cdot \sin \beta \\ x_1 \cdot \sin \beta & x_2 \cdot \cos \beta \end {pmatrix}[/mm]
>  
> Ay=  [mm]\begin {pmatrix} y_1 \cdot \cos \beta & -y_2 \cdot \sin \beta \\ y_1 \cdot \sin \beta & y_2 \cdot \cos \beta \end {pmatrix}[/mm]
>  
> Oder ist das jeweils nur eine spalte mit + bzw. -
> dazwischen?

[mm]Ax[/mm] ist ein Vektor! Also nur eine Spalte.

> det (Ax,Ay)=
>  [mm](x_1 \cdot \cos \beta -x_2 \cdot \sin \beta *)( y_1 \cdot \sin \beta + y_2 \cdot \cos \beta) - ( x_1 \cdot \sin \beta + x_2 \cdot \cos \beta) * (y_1 \cdot \cos \beta -y_2 \cdot \sin \beta )[/mm]
>  
> Jetzt muss ich jeweils was rausheben.
>  [mm]x_1*y_1 * ((\cos \beta * \sin \beta) +( -\sin \beta *-\cos \beta))[/mm]
>  
> + [mm]-x_1*x_2 ((\cos \beta * \sin \beta +( - - \sin \beta *-\cos \beta))[/mm]
>  
> + 0
>  0-> da das andere mit sin und cos immer 0 ergab.

>  
> Ist es ganz falsch? -Wahrscheinlich- ;(Wo sind meine
> Fehler?Beim rausheben ist glaub ich einiges schief
> gegangen! Wie gehts weiter?

Ja, das ist falsch. Die erste Zeile ist noch richtig (der Absatz danach ist Quark). Beim Ausmultiplizieren bekommst du Terme mit [mm]\sin\beta\cdot\cos\beta[/mm] und auch Terme mit [mm]\sin^2\beta[/mm] bzw. [mm]\cos^2\beta[/mm]. Wenn du richtig gerechnet hast, heben sich die gemischten Terme weg und es bleiben die quadratischen Terme übrig. Jetzt kannst du [mm]\sin^2\beta+\cos^2\beta=1[/mm] benutzen.

Schreib doch mal deine ausfühliche Rechnung, dann sehen wir, wo genau es hakt.

Lieben Gruß,
Fulla


Bezug
        
Bezug
Drehung um Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Mi 26.10.2011
Autor: leduart

Hallo
schreib das mal ordntlich auf, es hebt sich nit alles raus!
x1x2*.. etwa kommt gar nicht vor! [mm] x1y2*sin^2\beta+cos^2\beta [/mm] hebt sich nicht weg usw.
also kommt sicher nicht 0 raus.
anschaulich  ist das doch hoffentlich  auch klar?
und  deine fehler kann man ohne deine rechnung nicht finden.
gruss leduart


Bezug
                
Bezug
Drehung um Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:14 Do 27.10.2011
Autor: theresetom

uh, da hab ich wirklich ein käse gemacht. Also nochmal!

$ [mm] (x_1 \cdot \cos \beta -x_2 \cdot \sin \beta \cdot{})( y_1 \cdot \sin \beta [/mm] + [mm] y_2 \cdot \cos \beta) [/mm] - ( [mm] x_1 \cdot \sin \beta [/mm] + [mm] x_2 \cdot \cos \beta) \cdot{} (y_1 \cdot \cos \beta -y_2 \cdot \sin \beta [/mm] ) $
=
[mm] $x_1*y_1 [/mm] * cos [mm] \beta [/mm] * sin [mm] \beta [/mm] + [mm] x_1*y_2*cos^2 \beta [/mm] - [mm] x_2 [/mm] * [mm] y_1 [/mm] * [mm] sin^2 \beta [/mm] - [mm] x_2*y_2*sin \beta [/mm] * [mm] \cos \beta) [/mm] - [mm] (x_1*y_1*sin \beta [/mm] * [mm] cos\beta [/mm] - [mm] x_y*y_2 [/mm] * [mm] sin^2 \beta [/mm] + [mm] x_2*y_1 *cos^2 \beta [/mm] - [mm] x_2 [/mm] * [mm] y_2 [/mm] * [mm] \sin \beta [/mm] * [mm] \cos \beta [/mm] )$

da kann man ja streichen Ausdruck mit [mm] $x_1y_1, x_2y_2$ [/mm]
und erhalte dann wenn ich wie du vorhersagtes ausdrücke = 1 setze
[mm] x_1*y_2 [/mm] - [mm] x_2*y_1 [/mm]

Bezug
                        
Bezug
Drehung um Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Do 27.10.2011
Autor: leduart

Hallo
bitte Mitteilungen nicht als Frage stellen
Gruss leduart


Bezug
        
Bezug
Drehung um Winkel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:45 Do 27.10.2011
Autor: theresetom

Okay jetzt als Mitteilung,
DANKE!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de