Dreieck < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Wenn es ein Dreieck mit den Seiten a, b und c gibt, dann gibt es auch ein Dreick mit den Seiten [mm] \bruch{1}{a+b}, \bruch{1}{b+c} [/mm] und [mm] \bruch{1}{a+c}. [/mm] |
Das ist die Aufgabe, die mein Freund heute in seinem Mathe-Seminar bekommen hat. Er ist völlig ratlos. Er fragt sich, ob es möglich ist den kehrwert geometrisch darzustellen. Oder soll man so etwas eher rechnerisch lösen? Ich bin mir nicht sicher, ob ich es unter den richtigen Reiter gepackt habe und hoffe, dass ihr uns helfen könnt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:13 Mi 26.11.2014 | Autor: | abakus |
> Wenn es ein Dreieck mit den Seiten a, b und c gibt, dann
> gibt es auch ein Dreick mit den Seiten [mm]\bruch{1}{a+b}, \bruch{1}{b+c}[/mm]
> und [mm]\bruch{1}{a+c}.[/mm]
> Das ist die Aufgabe, die mein Freund heute in seinem
> Mathe-Seminar bekommen hat. Er ist völlig ratlos. Er fragt
> sich, ob es möglich ist den kehrwert geometrisch
> darzustellen. Oder soll man so etwas eher rechnerisch
> lösen? Ich bin mir nicht sicher, ob ich es unter den
> richtigen Reiter gepackt habe und hoffe, dass ihr uns
> helfen könnt.
Hallo,
Dreiecke mit den Seitenlängen a, b und c existieren genau dann, wenn diese Längen die drei Dreiecksungleichungen
a<b+c,
b<a+c und
c<a+b erfüllen.
Es ist also zu beweisen, dass aus der Gültigkeit dieser drei Ungleichungen auch die Gültigkeit der entsprechenden Ungleichungen mit den angegebenen Brüchen folgt.
Gruß Abakus
|
|
|
|