www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Dreieck
Dreieck < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck: maximaler Inhalt
Status: (Frage) beantwortet Status 
Datum: 18:29 Di 19.12.2006
Autor: jane882

Aufgabe
...

Hey!
Kann jemand mal über die Aufgabe drüber gucken? Vielen Dank:)

Sei P(x/f(x)) ein beliebiger Punkt auf Kf mit x größergleich -1. Untersuche, für welchen Wert von x das Dreieck N(-1/0), P(x/f(x)), Q(x/0) maximalen Inhalt besitzt.
f(x)= (4x+4)*e^-x

A= 1/2*g*h
1/2* (x+1)* f(x)
1/2 (x+1)* (4x+4)*e^-x

= 0,5 * (x+1)*(4x+4)

= [mm] 0,5*(4x^2 [/mm] + 4x + 4x + 4)

= [mm] 0,5*(4x^2 [/mm] + 8x + 4)

= [mm] 2x^2 [/mm] + 4x + 2…fehlt hier nicht ein e^-x ???


A(-1)= 0
lim A(x)= 0
x-> unendlich

A`(x)= 2*(x+1)²* e^-x (-1)+4(x+1)*e^-x
=e^-x (x+1)(-2x-2+4)
= e^-x (x+1)*(-2x+2)

A´(x)= 0 ->x= -1, x= 1... haben die hier (x+1) oder (-2x+2) nullgesetzt?

A max, A(1)= 8e^-1


        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Di 19.12.2006
Autor: leduart

Hallo

> Sei P(x/f(x)) ein beliebiger Punkt auf Kf mit x
> größergleich -1. Untersuche, für welchen Wert von x das
> Dreieck N(-1/0), P(x/f(x)), Q(x/0) maximalen Inhalt
> besitzt.
> f(x)= (4x+4)*e^-x
>  
> A= 1/2*g*h
> 1/2* (x+1)* f(x)
>  1/2 (x+1)* (4x+4)*e^-x
>
> = 0,5 * (x+1)*(4x+4)

ab hier fehlt [mm] e^{-x} [/mm]

> = [mm]0,5*(4x^2[/mm] + 4x + 4x + 4)
>
> = [mm]0,5*(4x^2[/mm] + 8x + 4)
>
> = [mm]2x^2[/mm] + 4x + 2…fehlt hier nicht ein e^-x ???
>  

doch, das Ganze [mm] *e^{-x} [/mm]

> A(-1)= 0
> lim A(x)= 0
> x-> unendlich

>
> A'(x)= 2*(x+1)²* e^-x (-1)+4(x+1)*e^-x
> =e^-x (x+1)(-2x-2+4)
> = e^-x (x+1)*(-2x+2)
>
> A´(x)= 0 ->x= -1, x= 1... haben die hier (x+1) oder (-2x+2)
> nullgesetzt?

richtig

> A max, A(1)= 8e^-1

besser schreiben A max bei x=1.
und es ist ein Max,(kein Min) weil bei x=-1 und x gegen infty A=0
Also alles richtig.
Gruss leduart

Bezug
                
Bezug
Dreieck: e^-x
Status: (Frage) beantwortet Status 
Datum: 19:00 Di 19.12.2006
Autor: jane882

Aufgabe
...

also  A= 2x²+4x+2* e^-x ???

und haben die da (x+1) oder (-2x+2) null gesetzt um -1 und 1 zu erhalten?
Danke:)

Bezug
                        
Bezug
Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Di 19.12.2006
Autor: M.Rex

Hallo

Dort steht:

A(x)=(2x²+4x+2)*e^-x

[mm] A'(x)=-e^{-x}*(2x²+4x+2)+e^{-x}(4x+4) [/mm]
[mm] =e^{-x}[-(2x²+4x+2)+4x+4] [/mm]
[mm] =e^{-x}(-2x²+2) [/mm]

Und da ein Produkt genau dann gleich Null wird, wenn eine der Faktoren Null wird, genügt es, den Faktor
-2x²+2 zu betrachten, da [mm] e^{x}\ne0 [/mm] für alle x.

also:

-2x²+2=0
[mm] \gdw [/mm] x²=1
[mm] \Rightarrow x=\pm1 [/mm]

Also liegen die Möglichen Extrema bei 1 und -1

(Tipp bei A(-1) sollte Null herauskommen, also bleibt nur noch a(1) als Maxima)

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de