www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Dreieck berechnen mit Vektoren
Dreieck berechnen mit Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck berechnen mit Vektoren: Korrektur, Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 21:06 Do 01.08.2013
Autor: AndrThadk

Aufgabe
Durch die drei Punkte A = (1; 4; -2 ), B = (3; 1; 0) und C = ( -1 ; 1; 2) wird
ein Dreieck festgelegt. Berechnen Sie die Lange der drei Seiten, die Innenwinkel im Dreieck sowie den Flacheninhalt .

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mit der oben genannten Aufgabe habe ich mehrere Probleme. Und zwar bekomme ich bei der Berechnung der Innenwinklen egal wie ich es drehe und wende keinen korrekten Wert für den Winkel Beta raus. Die Längen der Seiten, die ich berechnet habe, sind anhand der mir vorliegenden lösungen korrekt, die Winkel Alpha und Gamma bekomme ich ebenfalls korrekt raus, aber bei Beta haperts immer. Ich krieg da immer ca 102° raus, statt 77°. Klar, ich könnte einfach 180 - alpha - gamma rechnen und fertig, aber ich verstehe nicht, warum der Beta Wert bei mir immer falsch rauskommt. Verrechne ich mich immer gleich? Ich werd noch kirre.

Vorgegebene Lösungen:
|vec{a}| = [mm] \wurzel{20} [/mm]
|vec{b}| = [mm] \wurzel{29} [/mm]
|vec{c}| = [mm] \wurzel{17} [/mm]
[mm] \alpha [/mm] = 54,16°
[mm] \beta [/mm] = 77,47°
[mm] \gamma [/mm] = 48,37°
A = 9 FE

Ich habe zuerst die Länge der einzelnen Seiten des Dreiecks berechnet:

[mm] |\vec{a}| [/mm] = [mm] |\overline{BC}| [/mm] = [mm] |\vec{C} [/mm] - [mm] \vec{B}| [/mm] = [mm] \vmat{ \vektor{-4 \\ 0 \\ 2} } =\wurzel{20} [/mm]

[mm] |\vec{b}| [/mm] = [mm] |\overline{AC}| [/mm] = [mm] |\vec{C} [/mm] - [mm] \vec{A}| [/mm] = [mm] \vmat{ \vektor{-2 \\ -3 \\ 4} } [/mm] = [mm] \wurzel{29} [/mm]

[mm] |\vec{c}| [/mm] = [mm] |\overline{AB}| [/mm] = [mm] |\vec{B} [/mm] - [mm] \vec{A}| [/mm] = [mm] \vmat{ \vektor{2 \\ -3 \\ 2} } [/mm] = [mm] \wurzel{17} [/mm]

Soweit so gut. Jetzt also zu den Innenwinkeln des Dreiecks, da habe ich folgendes:

[mm] \alpha [/mm] = arccos [mm] \bruch{\overline{AB} * \overline{AC}}{|\overline{AB}| * |\overline{AC}|} [/mm] = arccos [mm] \bruch{13}{|\wurzel{17}| * |\wurzel{29}|} [/mm] = 54,16°

[mm] \gamma [/mm] = arccos [mm] \bruch{\overline{BC} * \overline{AC}}{|\overline{BC}| * |\overline{AC}|} [/mm] = arccos [mm] \bruch{16}{|\wurzel{20}| * |\wurzel{29}|} [/mm] = 48,37°

[mm] \beta [/mm] = arccos [mm] \bruch{\overline{AB} * \overline{BC}}{|\overline{AB}| * |\overline{BC}|} [/mm] = arccos [mm] \bruch{-4}{|\wurzel{17}| * |\wurzel{20}|} [/mm] = 102,53°

Ich krieg den Wert immer falsch raus. Kriegt ihr was anderes als -4 für [mm] \overline{AB} [/mm] * [mm] \overline{BC} [/mm] raus?






        
Bezug
Dreieck berechnen mit Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 01.08.2013
Autor: MathePower

Hallo AndrThadk,


> Durch die drei Punkte A = (1; 4; -2 ), B = (3; 1; 0) und C
> = ( -1 ; 1; 2) wird
> ein Dreieck festgelegt. Berechnen Sie die Lange der drei
> Seiten, die Innenwinkel im Dreieck sowie den Flacheninhalt
> .
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Mit der oben genannten Aufgabe habe ich mehrere Probleme.
> Und zwar bekomme ich bei der Berechnung der Innenwinklen
> egal wie ich es drehe und wende keinen korrekten Wert für
> den Winkel Beta raus. Die Längen der Seiten, die ich
> berechnet habe, sind anhand der mir vorliegenden lösungen
> korrekt, die Winkel Alpha und Gamma bekomme ich ebenfalls
> korrekt raus, aber bei Beta haperts immer. Ich krieg da
> immer ca 102° raus, statt 77°. Klar, ich könnte einfach
> 180 - alpha - gamma rechnen und fertig, aber ich verstehe
> nicht, warum der Beta Wert bei mir immer falsch rauskommt.
> Verrechne ich mich immer gleich? Ich werd noch kirre.
>  
> Vorgegebene Lösungen:
>  |vec{a}| = [mm]\wurzel{20}[/mm]
>  |vec{b}| = [mm]\wurzel{29}[/mm]
>  |vec{c}| = [mm]\wurzel{17}[/mm]
>  [mm]\alpha[/mm] = 54,16°
>  [mm]\beta[/mm] = 77,47°
>  [mm]\gamma[/mm] = 48,37°
>  A = 9 FE
>  
> Ich habe zuerst die Länge der einzelnen Seiten des
> Dreiecks berechnet:
>  
> [mm]|\vec{a}|[/mm] = [mm]|\overline{BC}|[/mm] = [mm]|\vec{C}[/mm] - [mm]\vec{B}|[/mm] = [mm]\vmat{ \vektor{-4 \\ 0 \\ 2} } =\wurzel{20}[/mm]
>  
> [mm]|\vec{b}|[/mm] = [mm]|\overline{AC}|[/mm] = [mm]|\vec{C}[/mm] - [mm]\vec{A}|[/mm] = [mm]\vmat{ \vektor{-2 \\ -3 \\ 4} }[/mm]
> = [mm]\wurzel{29}[/mm]
>  
> [mm]|\vec{c}|[/mm] = [mm]|\overline{AB}|[/mm] = [mm]|\vec{B}[/mm] - [mm]\vec{A}|[/mm] = [mm]\vmat{ \vektor{2 \\ -3 \\ 2} }[/mm]
> = [mm]\wurzel{17}[/mm]
>  
> Soweit so gut. Jetzt also zu den Innenwinkeln des Dreiecks,
> da habe ich folgendes:
>  
> [mm]\alpha[/mm] = arccos [mm]\bruch{\overline{AB} * \overline{AC}}{|\overline{AB}| * |\overline{AC}|}[/mm]
> = arccos [mm]\bruch{13}{|\wurzel{17}| * |\wurzel{29}|}[/mm] =
> 54,16°
>  
> [mm]\gamma[/mm] = arccos [mm]\bruch{\overline{BC} * \overline{AC}}{|\overline{BC}| * |\overline{AC}|}[/mm]
> = arccos [mm]\bruch{16}{|\wurzel{20}| * |\wurzel{29}|}[/mm] =
> 48,37°
>  


Hier kommt zwar das richtige heraus.

Hier sind die Vektoren mit Bezugspunkt C zu nehmen:

[mm]\gamma = arccos \bruch{\overrightarrow{\blue{CB}} * \overrightarrow{\blue{CA}}}{|\overrightarrow{\blue{CB}}| * |\overrightarrow{\blue{CA}|}[/mm]


> [mm]\beta[/mm] = arccos [mm]\bruch{\overline{AB} * \overline{BC}}{|\overline{AB}| * |\overline{BC}|}[/mm]
> = arccos [mm]\bruch{-4}{|\wurzel{17}| * |\wurzel{20}|}[/mm] =
> 102,53°
>  
> Ich krieg den Wert immer falsch raus. Kriegt ihr was
> anderes als -4 für [mm]\overline{AB}[/mm] * [mm]\overline{BC}[/mm] raus?
>  


Hier ist der Vektor [mm]\overrightarrow{BA}[/mm] zu nehmen,
dann bekommst Du auch den richtigen Winkel heraus.


Gruss
MathePower

Bezug
                
Bezug
Dreieck berechnen mit Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Fr 02.08.2013
Autor: AndrThadk

Danke, habs jetzt!

Bezug
        
Bezug
Dreieck berechnen mit Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Fr 02.08.2013
Autor: fred97

Ergänzend zu Mathepower:

Warum rechnest Du [mm] \beta [/mm] nicht so aus:

  $ [mm] \beta=$180° [/mm] $- [mm] \alpha- \gamma$ [/mm] ?

FRED

Bezug
                
Bezug
Dreieck berechnen mit Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Fr 02.08.2013
Autor: AndrThadk

Das habe ich ersatzweise gemacht, nur hatte mich gewundert, dass ich alpha und gamma richtig rausbekomme und beta nicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de