www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Dreiecke finden in Ebene
Dreiecke finden in Ebene < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecke finden in Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 So 14.06.2015
Autor: drossel

Aufgabe
Bestimmen Sie unter allen Dreiecken in der Ebene mit gegebenem Umfang 2s diejenigen Dreiecke mit dem größten Flächeninhalt.

Ich weiss nicht ganz, wie ich weitermachen soll. Mein Anfang:
die Lösung steht in "Elemente der differential- und integralrechnung" von Johann August Grunert, aber ich verstehe sie ab einem Punkt komme ich nicht weiter.

Der Anfang:
Der Flächeninhalt, der maximal werden soll, nenne ich m. Die Seiten des Dreiecks bezeichne ich mit a,b und c.
Nun ziehe ich Herons Formel zur Berechnung des Flächeninhalts eines Dreiecks heran, und setze die Hälfte des Umfangs ein und setze das =m, weil ich diejenigen mit größtem Flächeninhalt suche:
m= [mm] \wurzel{s(s-a)(s-b)(s-c)} [/mm]
Weiter soll man jetzt wohl beide Ausrücke ableiten, aber wonach, nach s, nach a, b oder c? Ich weiss nicht wirklich, wie ich konkret weiterrechnen soll.

Mag mir jemand weiterhelfen? Gruß

        
Bezug
Dreiecke finden in Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Mo 15.06.2015
Autor: reverend

Hallo drossel,

man kann es sich ja auch kompliziert machen.

> Bestimmen Sie unter allen Dreiecken in der Ebene mit
> gegebenem Umfang 2s diejenigen Dreiecke mit dem größten
> Flächeninhalt.

Da gibt es, wie man sich leicht vorstellen kann, nur eins. Da kann dann irgendwo irgendwie herumiegen...

>  Ich weiss nicht ganz, wie ich weitermachen soll. Mein
> Anfang:
>  die Lösung steht in "Elemente der differential- und
> integralrechnung" von Johann August Grunert, aber ich
> verstehe sie ab einem Punkt komme ich nicht weiter.
>  
> Der Anfang:
>  Der Flächeninhalt, der maximal werden soll, nenne ich m.
> Die Seiten des Dreiecks bezeichne ich mit a,b und c.
>  Nun ziehe ich Herons Formel zur Berechnung des
> Flächeninhalts eines Dreiecks heran, und setze die Hälfte
> des Umfangs ein und setze das =m, weil ich diejenigen mit
> größtem Flächeninhalt suche:
>  m= [mm]\wurzel{s(s-a)(s-b)(s-c)}[/mm]
>  Weiter soll man jetzt wohl beide Ausrücke ableiten, aber
> wonach, nach s, nach a, b oder c? Ich weiss nicht wirklich,
> wie ich konkret weiterrechnen soll.

Es ist nicht wirklich sinnvoll, drei Variablen einzuführen.
Nimm einfach ein Dreieck mit der Grundseite a und der Höhe h. Um eine maximale Fläche zu erreichen, muss es gleichschenklig sein. Das musst Du zeigen, aber das ist nicht schwierig.

Jetzt kannst Du Herons Formel nehmen - oder auch nicht. Es bleibt zu zeigen, dass der Flächeninhalt bei festem Umfang für [mm] h=\tfrac{1}{2}\wurzel{3}a [/mm] maximal wird. Finde dazu einen Ansatz.

Grüße
reverend

>
> Mag mir jemand weiterhelfen? Gruß


Bezug
        
Bezug
Dreiecke finden in Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Mo 15.06.2015
Autor: fred97

s>0 ist fest.

Bestimme also das Maximum der Funktion

  f(a,b,c)=s(s-a)(s-b)(s-c)

unter der nebenbedingung a+b+c=2s

Lagrange !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de