www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Dreiecksmatrix
Dreiecksmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreiecksmatrix: Idee
Status: (Frage) beantwortet Status 
Datum: 23:58 Fr 09.01.2015
Autor: black_jaguar

Aufgabe
Finde eine geschlossene Form für [mm] A^n. [/mm] A sei eine 3x3 obige Dreiecksmatrix mit auf der Diogonalen nur 1. und Beweisen sie.

Also: A= [mm] \pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 } [/mm]

Komme bei dieser Aufgabe nicht weiter. Da ich einfach keine geschlossene Form finde und morgen schreibe ich die Klasur. Und dies war die letzte Aufgabe bei dem Klasurvorbereitungsblatt.

Kann mir bitte einer die geschlossene Form sagen.

        
Bezug
Dreiecksmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Sa 10.01.2015
Autor: Fulla


> Finde eine geschlossene Form für [mm]A^n.[/mm] A sei eine 3x3 obige
> Dreiecksmatrix mit auf der Diogonalen nur 1. und Beweisen
> sie.

>

> Also: A= [mm]\pmat{ 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 }[/mm]

>

> Komme bei dieser Aufgabe nicht weiter. Da ich einfach keine
> geschlossene Form finde und morgen schreibe ich die Klasur.
> Und dies war die letzte Aufgabe bei dem
> Klasurvorbereitungsblatt.

>

> Kann mir bitte einer die geschlossene Form sagen.

Hallo black_jaguar,

ich vermute mal, es hängt nur am Eintrag rechts oben. Die anderen sollten nach dem Berechnen von [mm]A^2, A^3, A^4,\ldots[/mm] eigentlich klar sein. Es ist also
[mm]A^n=\begin{pmatrix} 1&n\cdot a& \ast\\ 0&1&n\cdot c\\ 0&0&1\end{pmatrix}[/mm].

Beim Eintrag (*) steht jeweils
n=2:   ac + 2b
n=3:  3ac + 3b
n=4:  6ac + 4b
n=5: 10ac + 5b

Auffällig dabei ist, dass die b's "immer eins mehr" werden - da ist der Term "[mm]+n\cdot b[/mm]" naheliegend.
Die Koeffizienten der ac sind Dreieckszahlen (1, 3, 6, 10,...). Sie erhält man, wenn man die ersten n natürlichen Zahlen addiert:
1=1
1+2=3
1+2+3=6
1+2+3+4=10 usw.
Dafür gibt es die Formel [mm]\sum_{k=1}^n k=\frac 12\cdot n(n-1)=\frac 12\cdot (n^2-n)[/mm].

Insgesamt: [mm]A^n=\begin{pmatrix} 1&n\cdot a& \frac 12\cdot (n^2-n)\cdot ac +n\cdot b\\ 0&1&n\cdot c\\ 0&0&1\end{pmatrix}[/mm]

Diese Behauptung musst du natürlich noch beweisen - z.B. durch Induktion.


Lieben Gruß,
Fulla

Bezug
                
Bezug
Dreiecksmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:42 Mo 12.01.2015
Autor: DieAcht

Hallo Fulla!


>  Dafür gibt es die Formel [mm]\sum_{k=1}^n k=\frac 12\cdot n(n-1)=\frac 12\cdot (n^2-n)[/mm].

Die Minuszeichen müssen durch Pluszeichen ersetzt werden.


Gruß
DieAcht

Bezug
                        
Bezug
Dreiecksmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:07 Mo 12.01.2015
Autor: Fulla


> Hallo Fulla!

>
>

> > Dafür gibt es die Formel [mm]\sum_{k=1}^n k=\frac 12\cdot n(n\red{+}1)=\frac 12\cdot (n^2\red{+}n)[/mm].

EDIT: Fehler korrigiert.

> Die Minuszeichen müssen durch Pluszeichen ersetzt werden.

>
>

> Gruß
> DieAcht

Hallo Acht,

stimmt, da hast du recht. War da wohl etwas schludrig... Danke für den Hinweis!

Lieben Gruß,
Fulla

Bezug
        
Bezug
Dreiecksmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Sa 10.01.2015
Autor: andyv

Hallo,

definiere die Matrix $N$ durch $A=E+N$, wobei E die Einheitsmatrix bezeichnet. Offenbar ist N nilpotent, genauer gilt bereits [mm] $N^3=0$. [/mm]
Da E und N kommutieren kannst du [mm] A^k [/mm] bequem mit der binomischen Formel berechnen.

Das funktioniert so natürlich auch für $n [mm] \times [/mm] n$ Dreiecksmatrizen.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de