www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Dreierpasch
Dreierpasch < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreierpasch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:52 So 22.10.2006
Autor: Huckleberry

Aufgabe
Wie groß ist die Wahrscheinlichkeit, bei einem Wurf von n 10-seitigen Würfeln mindestens drei gleiche Ergebnisse (mindestens einen Dreierpasch) zu bekommen?

Meine momentane Vermutung:

Man addiert die Anzahl der möglichen Dreierpaschs, Viererpaschs etc und subtrahiert davon die Anzahl der Dreierpaschs, Viererpaschs etc, die unter den dabei nicht betrachteten Würfeln vorkommen.
Zur Errechnung der Wahrscheinlichkeit teilt man diese Anzahl dann durch [mm] 10^n. [/mm]

Meine Formel zur Errechnung der 'günstigen' Möglichkeiten bisher:

[mm] \summe_{i=3}^{n} 10*9^{n-i}*\vektor{n\\ i} [/mm] - [mm] \summe_{j=1}^{n-3} 9*8^{n-3-j}*\vektor{n-3 \\ j} [/mm] - [mm] \summe_{k=1}^{n-6} 8*7^{n-6-k}*\vektor{n-6 \\ k}... [/mm]

Nun ist dies erstens nicht schön, und berücksichtigt zweitens auch noch nicht die Mehrlinge, die bei den nicht betrachteten Würfeln der weiteren Summanden der ersten Summenformel vorkommen (also bei den Summanden, die die Anzahl der Vierlinge etc betrachten).

Wie könnte man das noch einbinden? Und: gibt es eine insgesamt elegantere Lösung??

Vielen Dank!




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dreierpasch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:28 So 22.10.2006
Autor: Huckleberry

Falls es weiterhilft:

Hier meine bisherigen Überlegungen im Detail:

Für 1 und 2 Würfel: nicht möglich.

Für 3 Würfel: [mm] \bruch{10*1*1}{10^3}=0.01 [/mm]

Für 4 Würfel: [mm] \bruch{10*1*1*9*\vektor{4 \\3}+ 10*1*1*1 }{10^4}=0.037 [/mm]
(Dreierpasch, 1 Würfel zeigt andere Zahl und Viererpasch)

Für 5 Würfel: [mm] \bruch{10*1*1*9^2*\vektor{5 \\3}+ 10*1*1*1*9*\vektor{5 \\4} + 10*1*1*1*1}{10^5}=0.0851 [/mm]
(Dreierpasch mit 2 anderen Würfeln und Viererpasch mit einem anderen Würfel und Fuenferpasch)

Für 6 Würfel: [mm] \bruch{10*9^3*\vektor{6 \\3}+10*9^2*\vektor{6 \\4}+ 10*9*\vektor{6 \\5}+10-9}{10^6}=0.158491 [/mm]
(Dreierpasch diesmal mit 3 anderen Würfeln; deshalb gibt es 9 Möglichkeiten, daß diese 3 anderen Würfel einen weiteren Pasch zeigen. Diese müssen von der Gesamtzahl abgezogen werden)

Für 7 Würfel:
(Der leichteren Lesbarkeit wegen diesmal nur der Zähler)
[mm] 10*9^4*\vektor{7 \\3}+10*9^3*\vektor{7 \\4}+10*9^2*\vektor{7 \\5}+10*9*\vektor{7 \\6}+10-(9*8*\vektor{4 \\3}+9+9) [/mm]

Hier sind beim Dreierpasch nun 4 Würfel übrig, die Dreierpaschs oder Viererpasch bilden können; beim Viererpasch sind noch 3 Würfel übrig, die einen Dreierpasch bilden können; das muß subtrahiert werden. Und letzteres stellt meine oben entwicklete Formel schon nicht mehr dar...

Stimmen die Überlegungen bisher?
Wie lassen sich die Überlegungen zu 7 Würfeln systematisch in die Formel oben einbauen? Und: Gibt es nicht eine einfachere Lösung??

Nochmal danke!

Bezug
        
Bezug
Dreierpasch: Andere Idee
Status: (Antwort) fertig Status 
Datum: 10:51 So 22.10.2006
Autor: Zwerglein

Hi, Huckleberry,

> Wie groß ist die Wahrscheinlichkeit, bei einem Wurf von n
> 10-seitigen Würfeln mindestens drei gleiche Ergebnisse
> (mindestens einen Dreierpasch) zu bekommen?
>  Meine momentane Vermutung:
>  
> Man addiert die Anzahl der möglichen Dreierpaschs,
> Viererpaschs etc und subtrahiert davon die Anzahl der
> Dreierpaschs, Viererpaschs etc, die unter den dabei nicht
> betrachteten Würfeln vorkommen.
> Zur Errechnung der Wahrscheinlichkeit teilt man diese
> Anzahl dann durch [mm]10^n.[/mm]

Ich würde das Ganze eher über das Gegenereignis angehen!
Das n [mm] \ge [/mm] 3 sein muss, hast Du in Deiner neuen Mitteilung ja schon angemerkt.

Was ist nun also das Gegenereignis zu "mindestens ein Dreierpasch"?
a) Entweder sind alle gewürfelten Zahlen verschieden
oder
b) es gibt höchstens Zahlenpärchen.

Probier's mal über diese Idee!

mfG!
Zwerglein

a)  

Bezug
        
Bezug
Dreierpasch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:10 So 22.10.2006
Autor: Huckleberry

Hier also mein Versuch über die Gegenwahrscheinlichkeit:

Gesucht ist damit die Anzahl der Möglichkeiten, mit n 10-seitigen Würfeln nicht mehr als 2 gleiche Zahlen zu würfeln, also entweder lauter verschiedene Zahlen, oder ein Pärchen, oder zwei Pärchen ... oder n/2 Pärchen.

Die Anzahl der 'ungünstigen' Möglichkeiten ist damit meiner Ansicht nach:

[mm] \summe_{j=0}^{n/2} [\produkt_{i=0}^{j-1} (10-i)*\vektor{n-2*i \\ 2}] \bruch{(10-j)!}{((10-j)-(n-2*j))!} [/mm]


Das Produkt sollte jeweils die Anzahl für 0, 1, zwei, etc. Pärchen liefern (also für j=3: 3 Pärchen: [mm] 10*\vektor{n\\ 2}*9*\vektor{n-2\\ 2}*8*\vektor{n-4\\ 2}*\bruch{7!}{(7-(n-6))!} [/mm]

Stimmt das? Stimmt das auch für eine ungerade Anzahl von Würfeln?


EDIT: Fehler verbessert

Bezug
                
Bezug
Dreierpasch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 30.10.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de