www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Dualraum
Dualraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dualraum: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:36 Fr 14.06.2013
Autor: DrRiese

Aufgabe
Sei V ein dreidimensionaler [mm] \IR-Vektorraum [/mm] mit Basis [mm] S=(s_{1},s_{2},s_{3}). [/mm] Seien weiter [mm] u,v_{2},v_{3},w_{2},w_{3} \in [/mm] V mit
[mm] u_{S}=(1,2,3)^{T}, (v_{2})_{S}=(1,1,0)^{T}, (v_{3})_{S}=(0,1,1)^{T}, (w_{2})_{S}=(0,1,2)^{T}, (w_{3})_{S}=(1,1,1)^{T} [/mm]
und [mm] B=(s_{1},v_{2},v_{3}) [/mm] und [mm] C=(s_{1},w_{2},w_{3}) [/mm] zwei weitere Basen.

a) Wir betrachten [mm] s^{\*}_{1} [/mm] einmal als Element von [mm] B^{\*} [/mm] und einmal als Element aus [mm] C^{\*} [/mm] und schreiben dafür [mm] (s^{\*}_{1})_{B^{\*}} [/mm] bzw. [mm] (s^{\*}_{1})_{C^{\*}}. [/mm] Berechnen Sie [mm] (s^{\*}_{1})_{B^{\*}}(u) [/mm] und [mm] (s^{\*}_{1})_{C^{\*}}(u). [/mm]

b) Bestimmen Sie [mm] M=\{w \in V : (s^{\*}_{1})_{B^{\*}}(w)=(s^{\*}_{1})_{C^{\*}}(w)=0 \}. [/mm]

c) Sei nun [mm] \overline{V} [/mm] ein n-dimensionaler [mm] \IR-Vektorraum, \overline{v} \in \overline{V} [/mm] und [mm] \overline{B}, \overline{C} [/mm] zwei Basen, die [mm] \overline{v} [/mm] enthalten. Welche Dimension kann dann die folgende Menge haben? (Begründung)
[mm] \overline{M}=\{\overline{w} \in \overline{V} : \overline{v^{\*}_{B^{\*}}}(\overline{w})=\overline{v^{\*}_{C^{\*}}}(\overline{w})=0\} [/mm]

Hallo liebe Forenmitglieder :-)
Habe diese Aufgabe bearbeitet, bin mir aber recht unsicher. Wäre super, wenn jemand nochmal drübergucken könnte :-)

zu a)
[mm] u_{S}=s_{1}+2s_{2}+3s_{3} [/mm]
[mm] B=(s_{1},v_{2},v_{3}) [/mm] = [mm] (s_{1},s_{1}+s_{2},s_{2}+s_{3}) [/mm]
[mm] u_{B}= \lambda_{1}s_{1}+\lambda_{2}(s_{1}+s_{2})+\lambda_{3}(s_{2}+s_{3})=2s_{1}-(s_{1}+s_{2})+3(s_{2}+s_{3})=s_{1}+2s_{2}+3s_{3} [/mm]
Also [mm] u_{B}=(2,-1,3)^{T} [/mm]
[mm] (s^{\*}_{1})_{B^{\*}}(u)=(s^{\*}_{1})_{B^{\*}}(2s_{1}-v_{2}+3v_{3})=2(s^{\*}_{1})_{B^{\*}}(s_{1})-(s^{\*}_{1})_{B^{\*}}(v_{2})+3(s^{\*}_{1})_{B^{\*}}(v_{3})=2-0+0=2 [/mm]

Für [mm] C^{\*} [/mm] analog.

zu b)
[mm] M=\{\lambda\vektor{0 \\ 1 \\ 1},\lambda \in \IR \}. [/mm]

zu c)
dim [mm] \overline{V}=dim \overline{V^{\*}}=n [/mm]
[mm] \Rightarrow [/mm] da sowohl [mm] \overline{B}, [/mm] als auch [mm] \overline{C} [/mm] das Element [mm] \overline{v} [/mm] enthalten, gilt für die Dimension von [mm] \overline{M}: dim\overline{M}=n-1 [/mm]

Hoffe, das dies wenigstens halbwegs richtig ist :-)

LG,
DrRiese

        
Bezug
Dualraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 So 16.06.2013
Autor: DrRiese

Keiner da, der kurz drübergucken möchte? :-(

Bezug
        
Bezug
Dualraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Mo 17.06.2013
Autor: felixf

Moin DrRiese!

> Sei V ein dreidimensionaler [mm]\IR-Vektorraum[/mm] mit Basis
> [mm]S=(s_{1},s_{2},s_{3}).[/mm] Seien weiter
> [mm]u,v_{2},v_{3},w_{2},w_{3} \in[/mm] V mit
>  [mm]u_{S}=(1,2,3)^{T}, (v_{2})_{S}=(1,1,0)^{T}, (v_{3})_{S}=(0,1,1)^{T}, (w_{2})_{S}=(0,1,2)^{T}, (w_{3})_{S}=(1,1,1)^{T}[/mm]
> und [mm]B=(s_{1},v_{2},v_{3})[/mm] und [mm]C=(s_{1},w_{2},w_{3})[/mm] zwei
> weitere Basen.
>  
> a) Wir betrachten [mm]s^{\*}_{1}[/mm] einmal als Element von [mm]B^{\*}[/mm]
> und einmal als Element aus [mm]C^{\*}[/mm] und schreiben dafür
> [mm](s^{\*}_{1})_{B^{\*}}[/mm] bzw. [mm](s^{\*}_{1})_{C^{\*}}.[/mm] Berechnen
> Sie [mm](s^{\*}_{1})_{B^{\*}}(u)[/mm] und [mm](s^{\*}_{1})_{C^{\*}}(u).[/mm]
>  
> b) Bestimmen Sie [mm]M=\{w \in V : (s^{\*}_{1})_{B^{\*}}(w)=(s^{\*}_{1})_{C^{\*}}(w)=0 \}.[/mm]
>  
> c) Sei nun [mm]\overline{V}[/mm] ein n-dimensionaler [mm]\IR-Vektorraum, \overline{v} \in \overline{V}[/mm]
> und [mm]\overline{B}, \overline{C}[/mm] zwei Basen, die [mm]\overline{v}[/mm]
> enthalten. Welche Dimension kann dann die folgende Menge
> haben? (Begründung)
>  [mm]\overline{M}=\{\overline{w} \in \overline{V} : \overline{v^{\*}_{B^{\*}}}(\overline{w})=\overline{v^{\*}_{C^{\*}}}(\overline{w})=0\}[/mm]
>  
> zu a)
>  [mm]u_{S}=s_{1}+2s_{2}+3s_{3}[/mm]
>  [mm]B=(s_{1},v_{2},v_{3})[/mm] = [mm](s_{1},s_{1}+s_{2},s_{2}+s_{3})[/mm]
>  [mm]u_{B}= \lambda_{1}s_{1}+\lambda_{2}(s_{1}+s_{2})+\lambda_{3}(s_{2}+s_{3})=2s_{1}-(s_{1}+s_{2})+3(s_{2}+s_{3})=s_{1}+2s_{2}+3s_{3}[/mm]
>  
> Also [mm]u_{B}=(2,-1,3)^{T}[/mm]

[ok]

> [mm](s^{\*}_{1})_{B^{\*}}(u)=(s^{\*}_{1})_{B^{\*}}(2s_{1}-v_{2}+3v_{3})=2(s^{\*}_{1})_{B^{\*}}(s_{1})-(s^{\*}_{1})_{B^{\*}}(v_{2})+3(s^{\*}_{1})_{B^{\*}}(v_{3})=2-0+0=2[/mm]

Sieht gut aus!

> Für [mm]C^{\*}[/mm] analog.
>  
> zu b)
> [mm]M=\{\lambda\vektor{0 \\ 1 \\ 1},\lambda \in \IR \}.[/mm]

Wie kommst du dadrauf? Und bzgl. welcher Basis gibst du den Vektor $(0, 1, [mm] 1)^T$ [/mm] an?

> zu c)
>  dim [mm]\overline{V}=dim \overline{V^{\*}}=n[/mm]
>  [mm]\Rightarrow[/mm] da
> sowohl [mm]\overline{B},[/mm] als auch [mm]\overline{C}[/mm] das Element
> [mm]\overline{v}[/mm] enthalten, gilt für die Dimension von
> [mm]\overline{M}: dim\overline{M}=n-1[/mm]

Das stimmt nicht (bzw. muss nicht stimmen!), denn sonst haette die Menge in b) Dimension 2 und nicht 1.

Beschreib doch mal genauer wie du darauf gekommen bist. Und was du bei b) gemacht hast.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de