www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Dualraum/Dualbasis
Dualraum/Dualbasis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dualraum/Dualbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Sa 07.07.2012
Autor: EvelynSnowley2311

Aufgabe
a)
Es sei V der Vektorraum der reellen Polynome vom Grad [mm] \le [/mm] 1 (über [mm] \IR) [/mm] und sei [mm] v_i \in [/mm] V*  definiert durch

[mm] v_i [/mm] (f) = [mm] \integral_{0}^{i}{f(t) dt} [/mm] , i = 1,2

Bestimmen sie eine Basis von B, sodass B* = [mm] (v_1, v_2) [/mm] die zu B duale Basis ist.


b)

Sei V ein Vektorraum über einem Körper K mit der basis  B = [mm] (b_1,.....,b_n). [/mm] Ferner sei B * = [mm] (v_1,......v_n) [/mm] die zu B duale Basis. Zeigen sie , dass für alle x [mm] \in [/mm] V und alle v aus V* gilt:

x= [mm] v_1(x)b_1 [/mm] +....+ [mm] v_n(x)b_n [/mm] und
v [mm] =v(b_1)v_1 [/mm] + .... + [mm] v(b_n)v_n [/mm]

huhu zusammen,

zur a) habe ich folgenden Ansatz:

Vektorraum reeller Polynomfkt mit Grad [mm] \le [/mm] 1
also von der Form f(t) = at + b

dann ist [mm] v_1 [/mm] (f) = [mm] \integral_{0}^{1}{at + b dt} [/mm] =1/2 * a + b
und       [mm] v_2 [/mm] (f) [mm] =\integral_{0}^{2}{at + b dt} [/mm] = 2a + 2b

ich dachte ich komme an die Lösung , wenn ich die lin. Gls.

1 =0.5 * ax + by
0 = 2* ax + 2* by

und

0 =0.5 * ax + by
1 = 2* ax + 2* by

löse, als Ergebnis erhalte ich

fürs erste Gls.: x= [mm] \bruch{2}{a} [/mm] , y = [mm] \bruch{-2}{b} [/mm]
fürs zweite :    x= [mm] \bruch{1}{a} [/mm] , y = [mm] \bruch{-1}{2b} [/mm]

allerdings sehe ich hier das Problem, dass die Koeffizienten a,b, ja durchaus auch Null sein können.


b) Fehlt mir noch ein Anatz. Ich weiß nicht ob ichs vertauschen kann, also z.b.
    [mm] v_1(x)b_1 [/mm] = [mm] v_1b_1(x) [/mm] = 1* x = x




Liebe Grüße ;)  
Eve

        
Bezug
Dualraum/Dualbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Sa 07.07.2012
Autor: SEcki


> ich dachte ich komme an die Lösung , wenn ich die lin.
> Gls.
>
> 1 =0.5 * ax + by
>  0 = 2* ax + 2* by
>  
> und
>
> 0 =0.5 * ax + by
>  1 = 2* ax + 2* by

Wie kommst du daruf? Ich käme eher auf ein lineares GLS mit 4 Unbekannten ... klamüser mal auf, was du wafrum aufgestellt hast!

> b) Fehlt mir noch ein Anatz. Ich weiß nicht ob ichs
> vertauschen kann, also z.b.
> [mm]v_1(x)b_1[/mm] = [mm]v_1b_1(x)[/mm] = 1* x = x

Sicher nicht - aber x hat ja eine bestimmte Darstellung in der gegebenen Basis.

SEcki


Bezug
                
Bezug
Dualraum/Dualbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Sa 07.07.2012
Autor: EvelynSnowley2311


> > ich dachte ich komme an die Lösung , wenn ich die lin.
> > Gls.
> >
> > 1 =0.5 * ax + by
>  >  0 = 2* ax + 2* by
>  >  
> > und
> >
> > 0 =0.5 * ax + by
>  >  1 = 2* ax + 2* by
>  
> Wie kommst du daruf? Ich käme eher auf ein lineares GLS
> mit 4 Unbekannten ... klamüser mal auf, was du wafrum
> aufgestellt hast!

Die gleichungen an sich sind aber klar, oder? also ohne x und y.
mithilfe von kronecker delta ist auch klar, warum ich links jeweils einmal 0 und einma 1 setze. jetzt muss ich ja Varablen bzw mein Basiselemente finden, sodass die Gleichungen erfüllt sind. Hab ich die Variablen falsch eingefügt? man beachte a und b sind ja irgendwelche bel. aber festen Koeffizienten.

>  
> > b) Fehlt mir noch ein Anatz. Ich weiß nicht ob ichs
> > vertauschen kann, also z.b.
> > [mm]v_1(x)b_1[/mm] = [mm]v_1b_1(x)[/mm] = 1* x = x
>  
> Sicher nicht - aber x hat ja eine bestimmte Darstellung in
> der gegebenen Basis.

wie sieht diese Darstellung aus?^^  

> SEcki
>  


Bezug
                        
Bezug
Dualraum/Dualbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 So 08.07.2012
Autor: fred97


> > > ich dachte ich komme an die Lösung , wenn ich die lin.
> > > Gls.
> > >
> > > 1 =0.5 * ax + by
>  >  >  0 = 2* ax + 2* by
>  >  >  
> > > und
> > >
> > > 0 =0.5 * ax + by
>  >  >  1 = 2* ax + 2* by
>  >  
> > Wie kommst du daruf? Ich käme eher auf ein lineares GLS
> > mit 4 Unbekannten ... klamüser mal auf, was du wafrum
> > aufgestellt hast!
>  
> Die gleichungen an sich sind aber klar, oder?


Nein.


gesucht sind [mm] b_1,b_2 \in [/mm] V mit:

[mm] b_1 [/mm] und [mm] b_2 [/mm] sind l.u. in V, [mm] v_1(b_1) [/mm] =1, [mm] v_1(b_2) [/mm] =0, [mm] v_2(b_1) [/mm] =0 und [mm] v_2(b_2) [/mm] =1.

Für [mm] b_1 [/mm] und [mm] b_2 [/mm] mache den Ansatz

[mm] b_1(x)=\alpha [/mm] x+ [mm] \beta, b_2(x)= \gamma [/mm] x+ [mm] \delta. [/mm]




> also ohne x
> und y.
> mithilfe von kronecker delta ist auch klar, warum ich links
> jeweils einmal 0 und einma 1 setze. jetzt muss ich ja
> Varablen bzw mein Basiselemente finden, sodass die
> Gleichungen erfüllt sind. Hab ich die Variablen falsch
> eingefügt? man beachte a und b sind ja irgendwelche bel.
> aber festen Koeffizienten.
>  >  
> > > b) Fehlt mir noch ein Anatz. Ich weiß nicht ob ichs
> > > vertauschen kann, also z.b.
> > > [mm]v_1(x)b_1[/mm] = [mm]v_1b_1(x)[/mm] = 1* x = x


Ist x [mm] \in [/mm] V, so hat x die Darstellung

   x= [mm] \alpha_1b_1+...+\alpha_nb_n [/mm]

Berechne mal [mm] v_j(x) [/mm]


Ist  $ v [mm] \in [/mm] $ V*, so hat v die Darsstellung

    v= [mm] \beta_1v_1+...+\beta_nv_n. [/mm]

Berechne mal [mm] v(b_j). [/mm]

FRED

>  >  
> > Sicher nicht - aber x hat ja eine bestimmte Darstellung in
> > der gegebenen Basis.
>  
> wie sieht diese Darstellung aus?^^  
> > SEcki
>  >  
>  


Bezug
                                
Bezug
Dualraum/Dualbasis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Di 10.07.2012
Autor: EvelynSnowley2311

danke ;)

habs hingekriegt^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de