www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Duration bei langen Laufzeiten
Duration bei langen Laufzeiten < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Duration bei langen Laufzeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Di 30.05.2006
Autor: LordExcalibur

Aufgabe
Eine Kuponanleihe mit einem Nominalzins von 12% und einem Nennwert von 100 Mio EUR hat eine Restlaufzeit von 25 Jahren. Die Marktrendite über alle Laufzeiten beträgt 8%.
Berechnen Sie die Duration der Anleihe.

Hallo,

ich habe eine Frage zur Berechnung der Duration bei Kuponanleihen mit langen Laufzeiten.
Wir haben üblichweise die Duration über eine Tabelle ermittelt, dies ist jedoch bei langen Laufzeiten (wie hier 25 Jahre) sehr aufwendig.

Ich habe für die Aufgabe folgenden Ansatz:

Variablen:

y: Rendite
CF: Cash Flow (Auszahlungsbetrag)
ABWF: Annuitäten Barwert Faktor
n: Laufzeit
NW: Nennwert der Anleihe
P: Preis der Anleihe (Summe der Barwerte der CF)
DUR: Duration


zunächst wird der Preis berechnet
P = CF * ABWF8%,25J + [mm] 100/1+y^n [/mm]
P = 12 Mio * 10,6748 + 100/1,08^25
P = 142,70 Mio

Soweit ist alles OK.


Da ein Zero Bond nach der Duration die Summe der Nettoauszahlungen auszahlen muss um eine mit der Kuponanleihe gleiches Zinsänderungsrisiko und Rendite zu haben habe ich folgende Formel aufgestellt:

y =  ((Summe CF + NW) / P)^(1/DUR) -1

nach der Duration aufgelöst

DUR = ln ((Summe CF + NW) / P) / ln (y+1)

DUR = ln((25*12Mio + 100Mio) / 142,70 Mio) / ln (1,08)
DUR = 13,39

Die tatsächliche Duration beträgt jedoch 10,84 (mit Excel über eine Tabelle ausgerechnet).

Wie lässt sich diese Abweichung erklären?
Gibt es eine Möglichkeit die Duration bei längeren Laufzeiten auf einem einfachen Weg genau zu berechnen?


Grüße,
Sebastian




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Duration bei langen Laufzeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Mi 31.05.2006
Autor: Josef

Hallo Sebastian,

> Eine Kuponanleihe mit einem Nominalzins von 12% und einem
> Nennwert von 100 Mio EUR hat eine Restlaufzeit von 25
> Jahren. Die Marktrendite über alle Laufzeiten beträgt 8%.
> Berechnen Sie die Duration der Anleihe.
>  Hallo,
>  
> ich habe eine Frage zur Berechnung der Duration bei
> Kuponanleihen mit langen Laufzeiten.
>  Wir haben üblichweise die Duration über eine Tabelle
> ermittelt, dies ist jedoch bei langen Laufzeiten (wie hier
> 25 Jahre) sehr aufwendig.
>  
> Ich habe für die Aufgabe folgenden Ansatz:
>  
> Variablen:
>  
> y: Rendite
>  CF: Cash Flow (Auszahlungsbetrag)
>  ABWF: Annuitäten Barwert Faktor
>  n: Laufzeit
>  NW: Nennwert der Anleihe
>  P: Preis der Anleihe (Summe der Barwerte der CF)
>  DUR: Duration
>  
>
> zunächst wird der Preis berechnet
>  P = CF * ABWF8%,25J + [mm]100/1+y^n[/mm]
>  P = 12 Mio * 10,6748 + 100/1,08^25
>  P = 142,70 Mio
>

> Soweit ist alles OK.
>  
>

[ok]


> Da ein Zero Bond nach der Duration die Summe der
> Nettoauszahlungen auszahlen muss um eine mit der
> Kuponanleihe gleiches Zinsänderungsrisiko und Rendite zu
> haben habe ich folgende Formel aufgestellt:
>  
> y =  ((Summe CF + NW) / P)^(1/DUR) -1
>  
> nach der Duration aufgelöst
>  
> DUR = ln ((Summe CF + NW) / P) / ln (y+1)
>  
> DUR = ln((25*12Mio + 100Mio) / 142,70 Mio) / ln (1,08)
>  DUR = 13,39
>  
> Die tatsächliche Duration beträgt jedoch 10,84 (mit Excel
> über eine Tabelle ausgerechnet).
>  
> Wie lässt sich diese Abweichung erklären?
>  Gibt es eine Möglichkeit die Duration bei längeren
> Laufzeiten auf einem einfachen Weg genau zu berechnen?
>  
>

Die Berechnung kannst du nach folgender Formel machen:

[mm] D = \bruch{1+i}{i} - \bruch{q*C_n + n*(Z-iC_n)}{Z*(q^n -1) + iC_n}[/mm]


D = Duration
Z = Kupon
q = Marktzinsfaktor, q = 1+i
n = Restlaufzeit der Anleihe
[mm] C_n [/mm] = Rücknahmekurs


mit deinen Zahlenwerten:

D = [mm]\bruch{1,08}{0,08} - \bruch{1,08*100 + 25*(12- 0,08*100)}{12*(1,08^{25}-1) + 0,08*100}[/mm]

D = 10,84


Viele Grüße
Josef

Bezug
                
Bezug
Duration bei langen Laufzeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mi 31.05.2006
Autor: LordExcalibur

Danke für die Antwort.

Ist denn die Formel mit dem Logarithmus korrekt? Wenn ja, wie kommt es zu solchen Abweichungen?

Bezug
                        
Bezug
Duration bei langen Laufzeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Do 01.06.2006
Autor: Josef

Hallo Sebastian,

>
> Ist denn die Formel mit dem Logarithmus korrekt? Wenn ja,
> wie kommt es zu solchen Abweichungen?


deine Formel kenne ich leider nicht. Deshalb kann ich dazu nichts sagen.

Die Duration für endfällige Kupon-Anleihen läßt sich auch nach der kürzeren Formel errechnen:

[mm]D = \bruch{1,08}{0,08} - \bruch{1,08+25(0,12-0,08)}{0,12(1,08^{25}-1)+0,08}[/mm]

D = 10,83953...


dabei gilt:
Kurs und Kupon in dezimaler Schreibweise
Z = 12% = 0,12
[mm] C_n [/mm] = 100% = 1
i = 0,08
n = 25


Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de