www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Durchmesser, Metrik
Durchmesser, Metrik < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Durchmesser, Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Sa 06.09.2008
Autor: peterchen07

Hi,

hab folgende Aufgabe zu lösen:
(X,d) ist ein pseudometrischer Raum , S Teilmenge von X.
[mm] D(S):=sup\{d(s,s') | s,s' \in S\} \cup \{-\infty,\infty\} [/mm] ist der Durchmesser von S. Teilmengen S mit [mm] D(S)<\infty [/mm] heißen d-beschränkt. Z.z. Die Vereinigung endlich vieler d-beschränkter Teilmengen von X ist d-beschränkt.


Mein Ansatz war der folgende: Für n Teilmengen [mm] S_i [/mm] von X mit i={1,...,n} sei [mm] s_i \in S_i. [/mm] Dann gilt oBdA für alle x [mm] \in S_1 [/mm] und y [mm] \in S_n [/mm] :

d(x,y) [mm] \le d(x,s_1) [/mm] + [mm] \summe_{i=1}^{n} d(s_i,s_{i+1} [/mm] + [mm] d(s_n,y) [/mm]

Hier komm ich dann aber nicht ganz weiter weil ich nicht weiß was ich mit der Summe machen soll, die anderen beiden Terme sind sowieso d-beschränkt.
Wie komme ich jetzt hier weiter oder bin ich völlig auf dem Holzweg?

Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Durchmesser, Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 01:16 So 07.09.2008
Autor: pelzig

Ich denke es ist ein Ding der Unmöglichkeit, für beliebige [mm]x,y\in A\cup B[/mm] explizit eine obere Schranke für $d(x,y)$ zu berechnen, aber ich kann mich auch irren.

Edit: Es ist doch viel einfacher... Du nimmst dir zwei beliebige Elemente [mm] $a\in [/mm] A$ und [mm] $b\in [/mm] B$. Dann gilt für alle [mm] $x,y\in A\cup [/mm] B$: [mm]d(x,y) \le d(x,a)+d(a,b)+d(b,y)\le D(A)+d(a,b)+D(B)[/mm]. Fertig ;-)

Jedenfalls kann man die Behauptung durch einen Widerspruchsbeweis zeigen:

Es genügt zu zeigen, dass die Vereinigung zweier d-beschränkter Mengen $A$ und $B$ d-beschränkt ist. Sind $A$ oder $B$ leer, so ist die Behauptung trivial. Wir nehmen nun an, die Behauptung wäre falsch. Dann gäbe es zu jedem [mm] $n\in\IN$ [/mm] Elemente [mm] $a_n,b_n\in A\cup [/mm] B$ mit [mm] $d(a_n,b_n)>n$. [/mm] Da $A$ und $B$ d-beschränkt sind, können wir oBdA [mm] $a_n\in [/mm] A$ und [mm] $b_n\in [/mm] B$ annehmen. Damit folgt [mm] $nn-d(a_1,b_1) [/mm] - D(B)=:n-C$. Jedenfalls wächst die Folge [mm] $\left(d(a_1,a_n)\right)_{n\in\IN}$ [/mm] unbeschränkt, und damit [mm] $D(A)=\infty$ [/mm] - Widerspruch.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de