www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - E-Feld Bewegte Ladungsdichte
E-Feld Bewegte Ladungsdichte < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E-Feld Bewegte Ladungsdichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Mi 25.08.2010
Autor: qsxqsx

Hallo Leute,

Ich hatte heute letzten Test, und da ist mir noch eine Aufgabe die mich nicht loslassen will im Kopf:

Gegeben ist ein unendlich langer Draht mit Radius R und Volumenladungsdichte p > 0. Der Draht bewegt sich mit der Geschwindigkeit v in Positive x Richtung.

Berechnen sie das Elektromagnetische Feld im Leiter, als auch ausserhalb des Leiters.


Also was ich dazu sagen muss, wir hatten noch keine Maxwell gleichungen in dieser Vorlesung.
Normalerweise, wenn die Ladung sich nicht bewegt ist das E-Feld doch so zu berechnen:
[mm] E(r)*2*\pi*r*l [/mm] =  [mm] \bruch{p*\pi*r^{2}*l }{\varepsilon_{0}} [/mm]

Ja nach Innen-oder Aussenbereich muss man auf der Rechten Seite R oder r schreiben...

So.

Aber dieser Formel kenn ich auch noch:

E(r) = [mm] \bruch{J}{k}, [/mm] J = Stromdichte, k = Leitwert

Die Strom dichte wäre ja: J = [mm] \bruch{dQ}{dt}*\bruch{1}{A} [/mm] = [mm] \bruch{p*v*\pi*R^{2}}{}*\bruch{1}{\pi*R^{2}} [/mm]

Das E-Feld wäre somit:

E = [mm] \bruch{p*v}{k} [/mm]

Ich kapiers nicht wie man das jetzt berechnen soll.
Mich verwirrt zudem: Es ist von einem DRAHT die Rede (die sind doch aus Metall?) Andrerseits heisst es die Ladung sei gleichmässig im Draht verteilt. In einem Metal verteilen sich doch aber die Ladungen nach aussen...

Gruss

        
Bezug
E-Feld Bewegte Ladungsdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 Mi 25.08.2010
Autor: GvC

Wichtigste Frage an Dich: Wie ist der Draht gerichtet, d.h. welchen Winkel bilden Geschwindigkeit (x-Richtung) und Längsachse des Drahtes?

Und dann: Bist Du sicher, dass es sich um einen unendlich langen Draht handelt?

Wenn Du vom elektromagnetischen Feld redest, meinst Du dann wirklich beide Feldtypen? Als Beispiel hast Du jedenfalls nur das elektrische Feld berücksichtigt.

Bewegt sich der Draht im Vakuum? Sind irgendwelche metallischen oder nichtmetallischen Begrenzungen vorhanden? Bewegt sich der Draht eventuell sogar in einem Magnetfeld?

Bezug
                
Bezug
E-Feld Bewegte Ladungsdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:23 Do 26.08.2010
Autor: qsxqsx

Hallo!

Danke dir. Sorry, eine Info habe ich unterlassen, ja der Draht Bewegt sich in Positive x-Richtung. Die Bewegung als auch die Ausbreitung des Drahtes sind paralell zueinander.

Es ist nichts bezüglich der Umgebung angegeben, d.h. wird Vakuum bedeuten. Aja und eine Leitfähigkeit k ist auch nicht angegeben.
Ja, der Draht ist unendlich lang.

Aber plus minus habe ich zu 98% das geschrieben, so wie es in der Testaufgabe formuliert wurde. Ich habe mir da die Zähneausgebissen. Es war die Frage nach dem Elektromagnetischen Feld...

Macht das denn jetzt was aus das der Draht sich bewegt oder nicht? Die Ladung ist ja immer die Gleiche da, aber sie bewegt sich...das verwirrt mich...

Qsxqsx



Bezug
        
Bezug
E-Feld Bewegte Ladungsdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Fr 27.08.2010
Autor: GvC

Dein Einwand ist berechtigt. Auch ich denke bei dem Begriff "Draht" an ein metallisches Gebilde. Eventuelle Überschussladungen sitzen dort aber immer an der Oberfläche. Ich nehme deshalb an, dass die angegebene Volumenladungsdichte ein reiner Rechenwert ist, der sich aus dem rein rechnerischen Verhältnis aus Überschussladung und Volumen ergibt.

Für r<R, also im Inneren des Drahtes kann keine elektrische Feldstärke existieren. Auch kein Magnetfeld, da im Draht kein Strom fließt. Aus demselben Grunde erübrigt sich auch die Angabe einer Leitfähigkeit.

Im Außenraum (r>R) ist dagegen ein elektrisches Feld zu berechnen, das Du schon fast richtig bestimmt hast. Du musst allerdings im Zähler das r² durch R² ersetzen. r ist die unabhängige Variable, während Du die Ladung im Draht mit dem Radius R bestimmst. Die elektrische Feldstärke ist radial nach außen gerichtet und hat den Betrag

E = [mm] \bruch{\rho R^2}{2r\varepsilon_0} [/mm]

Für einen außenstehenden Beobachter fließt wegen der Bewegung des Drahtes ein konstanter Strom
I = [mm] \bruch{Q}{t} [/mm]
mit
Q = [mm] \rho\pi R^2*l [/mm]
---> I = [mm] \bruch{\rho\pi R^2*l}{t} [/mm]
Dabei ist [mm] \bruch{l}{t} [/mm] = v

---> I = [mm] \rho\pi R^2 [/mm] v

Nach Durchflutungssatz ist dieser Strom von einem Magnetfeld umgeben, dessen Feldstärke ist

H = [mm] \bruch{I}{2\pi r} [/mm] = [mm] \bruch{\rho R^2 v}{2r} [/mm]

So jedenfalls würde ich das verstehen.

Bezug
                
Bezug
E-Feld Bewegte Ladungsdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Sa 28.08.2010
Autor: Kroni

Hi,

nun, wenn man 'im Draht Sitzt', und man die Felder im Inneren des Drahtes aus seinem Bezugssystem heraus beschreiben will, dann 'fliesst' ja in der Tat kein Strom, also kein [mm]\vec{B}[/mm]-Feld.

Wenn man aber davon ausgeht, dass man eine konstante Volumenladungsdichte [mm]\rho(r) = \rho_0 \Theta(R-r)[/mm] hat, wobei [mm]R[/mm] der Radius des Drahtes ist, also anders geschrieben
[mm]\rho = \begin{cases} \rho_0 & r\le R \\ 0 & r>R \end{cases}[/mm]

dann gibt es im inneren aufgrund der Ladungsdichte auch ein E-Feld.

Also es kommt dann auf die 'Interpretation' drauf an, ob jetzt mit dem Draht ein echter Metalldraht gemeint ist, oder aber, man geht von einem 'anderen' Draht aus, der dann eine konstante Ladungsverteilung hat. Also in der Richtung ists wohl eher 'Interpretationssache'.

LG

Kroni

Bezug
                        
Bezug
E-Feld Bewegte Ladungsdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:22 So 29.08.2010
Autor: GvC

Ein Draht ist laut Lexikon ein metallisches Gebilde, also herrscht in seinem Inneren kein elektrostatisches Feld. Sollte es sich aber um einen "Draht" aus hoch isolierendem Material handeln, in dem die Raumladung fest verankert ist, dann gibt es natürlich auch im Inneren des "Drahtes" ein elektrisches Feld in radialer Richtung, nach Gaußschem Flusssatz vom Betrage

E = [mm] \bruch{\rho*r}{2*l*\varepsilon_0*\varepsilon_r} [/mm]

Alle anderen Effekte bleiben qualitativ und quantitativ so wie bereits beschrieben.

Bezug
                                
Bezug
E-Feld Bewegte Ladungsdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:40 So 29.08.2010
Autor: Kroni

Hi,

ja, das meinte ich.

Entweder, man redet von einem Draht, der 'metallisch' ist, also [mm]\rho(r) = 0[/mm] im inneren, oder aber, man 'definiert' einen neuen 'Draht', der eine konstante Ladungsdichte [mm]\rho_0[/mm] im Inneren hat, so dass ein Feld existiert.

Das ist dann genau die Interpretationssache, wo es drauf ankommt, welchen Sprachgebraucht bzw. Abstraktionsgrad in der Aufgabe vorrausgesetzt hat, denn aus der Aussage "unendlich langer Draht mit Radius R und Volumenladungsdichte [mm]\rho > 0[/mm]" weiss man ja a priori noch nicht, ob damit der 'reale' Draht oder der 'konstruierte' Draht gemeint ist.

Aber wie gesagt, das ist nur eine kleine Meinungssache, je nachdem, wie der Sprachgebrauch vorher gewesen ist.

Ansonsten gebe ich dir vollkommen recht, ich wollte nur noch einmal andeuten, dass evtl. die Antwort, dass ein [mm]\vec{E}[/mm]-Feld im Inneren herrschen kann, auch 'richtig' sein kann.

LG

Kroni



Bezug
                                        
Bezug
E-Feld Bewegte Ladungsdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:03 Fr 10.09.2010
Autor: qsxqsx

Hi Leute,

Danke. Ich war fürne Zeit abwesend.
Ich werd nochmals schreiben wie die Lösung aussieht, wenn ich sie habe...

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de