www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - E-Funktion
E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 So 06.12.2009
Autor: coucou

Aufgabe
Schreiben Sie den Funktionsterm f(x) in der Form [mm] e^{ax+b} [/mm]

Hallo!
Ich versteh das irgendwie nicht so ganz. Warum soll man das überhaupt machen?
Wenn man jetzt z.B. hat [mm] e*e^{2x+1}, [/mm] dann hat das doch schon die Form nur mit einem Vorfaktor. Und wie soll man den wegkriegen?
Oder wie soll man denn [mm] 2^{2x}mit [/mm] e schreiben?!

Danke schon mal!

        
Bezug
E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 So 06.12.2009
Autor: angela.h.b.


> Schreiben Sie den Funktionsterm f(x) in der Form [mm]e^{ax+b}[/mm]
>  Hallo!
>  Ich versteh das irgendwie nicht so ganz.

Hallo,

wär' schon gut, wenn Du in der Aufgabenstellung auch die zu bearbeitenden Terme verraten würdest...

>  Warum soll man
> das überhaupt machen?

Z.B. weil man weiß, wie man die e-Funktion ableitet.
Aber ein wichtiger Grund wäre auch: einfach um es zu können, falls man es mal benötigt.


>  Wenn man jetzt z.B. hat [mm]e*e^{2x+1},[/mm] dann hat das doch
> schon die Form nur mit einem Vorfaktor. Und wie soll man
> den wegkriegen?

Indem man die Potenzgesetze kann: [mm] e*e^{2x+1}=e^1*e^{2x+1}=e^{2x+1+1}=e^{2x+2}. [/mm]

>  Oder wie soll man denn [mm]2^{2x}mit[/mm] e schreiben?!

Bedenke, daß die e-Funktion die Umkehrfunktion der Logarithmusfunktion ist.

Also ist [mm] 2=e^{ln(x)}, [/mm] und damit erhält man [mm] 2^{2x}= [/mm] ???

Gruß v. Angela

>  
> Danke schon mal!


Bezug
                
Bezug
E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 So 06.12.2009
Autor: coucou

Hallo!

Danke erstmal.
Ja, sorry hab vergessen die Aufgaben zu posten.
Hier sind sie

a) e* [mm] e^{2x+1} [/mm]

Das leuchtet mir auch ein, so wie du es erklärt hast. Die Potenzgesetze kann ich ja.

b) [mm] 2e^{0,5-3} [/mm]

So, würde man hier dann 2* [mm] e^0 [/mm] * [mm] e^{0,5-3} [/mm] rechnen?
Aber würde das dann nicht das gleiche geben, wie am Anfang?

c) 4/5 [mm] e^{x+ln(1,25)} [/mm]

Mach ich das dann hier auch mit [mm] e^0 [/mm] oder muss ich irgendwie den ln zu e umkehren?

d) [mm] 2^{2x} [/mm]
So, da hast du geschrieben 2= e^ln(x), aber müsste es dann nicht eigentlich 2x sein? Das steht doch im Exponenten?

Lg,
coucou

Bezug
                        
Bezug
E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 So 06.12.2009
Autor: HJKweseleit

Lass mal den Faktor [mm] e^0 [/mm] weg, denn der ist nur =1, und das bringt hier nichts.

Mach mal bei a) [mm] e*e^{2x+1}=e^1*e^{2x+1}=e^{jetzt nur noch ein Ausdruck} [/mm]

Bei b) machst du aus der 2 einfach [mm] e^{ln2} [/mm] und gehst wie bei a) vor usw.

Bezug
                                
Bezug
E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 So 06.12.2009
Autor: coucou

Hallo!

Also hätte man dann jetzt bei Aufg.

b) [mm] 2e^{0,5-3}= e^{ln2} [/mm] * [mm] e^{0,5-3}= e^{ln2 + 0,5-3} [/mm]

und bei

c) 4/4 [mm] e^{x+ ln(1,25)}= e^{ln(4/5)}* e^{x+ ln(1,25)}= e^{x+ ln(1,25) + ln(4/5)} [/mm]

Kann man die beiden Lns dann nochmal zusammenfassen?

d) [mm] 2^{2x} [/mm] = [mm] e^{ln2} [/mm] * ? Wie drücke ich es denn aus, wenn ich einen Exponenten habe? ich könnte ja nur ln(2x) = 2x oder sowas machen:(
Bei der e)genauso:(

Lg

Bezug
                                        
Bezug
E-Funktion: Super
Status: (Antwort) fertig Status 
Datum: 14:49 So 06.12.2009
Autor: HJKweseleit

Jetzt hast du es verstanden.


> c) 4/4 [mm]e^{x+ ln(1,25)}= e^{ln(4/5)}* e^{x+ ln(1,25)}= e^{x+ ln(1,25) + ln(4/5)}[/mm]
>  
> Kann man die beiden Lns dann nochmal zusammenfassen?

Ja, nach der Regel ln(a) + ln(b) = ln(a*b), wobei sich hier noch stark was vereinfacht.

> d) [mm]2^{2x}[/mm] = [mm]e^{ln2}[/mm] * ? Wie drücke ich es denn aus, wenn
> ich einen Exponenten habe? ich könnte ja nur ln(2x) = 2x
> oder sowas machen:(

[mm]2^{2x}[/mm] = [mm](e^{ln2})^{2x}[/mm]= Jetzt Potenzgesetze anwenden...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de