www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - E-Funktion , lin. Abb.
E-Funktion , lin. Abb. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E-Funktion , lin. Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mi 28.12.2005
Autor: Lavanya

Es bezeichne  C( [mm] \IR, \IR) [/mm] den  [mm] \IR-Vektorraum [/mm] der stetig differenzierbaren Funktion  [mm] \IR \to \IR. [/mm] Wir bestrachten die lineare Abbildung :

F: C( [mm] \IR, \IR) \to Abb(\IR ,\IR), [/mm] f [mm] \to [/mm] f '

Aufgabe
Zeigen Sie : Die Menge

B :={ [mm] e^{x}, e^{x}+ e^{2x}, e^{x}+ e^{2x}+ e^{3x},e^{x}+ e^{2x}+ e^{3x}+e^{4x}} [/mm]

ist eine Basis des Vektorraums V:=span { [mm] e^{x},e^{2x},e^{3x},e^{4x}}. [/mm]

(Tipp: { [mm] e^{x},e^{2x},e^{3x},e^{4x} [/mm] } ist laut Vorlesung linear unabhaengig.)

(I) Zeigen Sie : F(V)= V.

(II) Bestimmen Sie die Darstellungsmatrix des Endomorphismus F|V: V [mm] \to [/mm] V bezueglich der Basis B von V.

Halli Hallo,

koenntet ihr mir hier vielleicht helfen ?

gruss Lavanya

        
Bezug
E-Funktion , lin. Abb.: Matrix des "Basiswechsels"
Status: (Antwort) fertig Status 
Datum: 23:32 Mi 28.12.2005
Autor: moudi


> Zeigen Sie : Die Menge
>
>  [mm]B :=\{e^{x}, e^{x}+ e^{2x}, e^{x}+ e^{2x}+ e^{3x},e^{x}+ e^{2x}+ e^{3x}+e^{4x}\}[/mm]
>  
> ist eine Basis des Vektorraums [mm]V:=span\{e^{x},e^{2x},e^{3x},e^{4x}\}.[/mm]
>  
> (Tipp: [mm]\{e^{x},e^{2x},e^{3x},e^{4x}\}[/mm]  ist laut Vorlesung
> linear unabhaengig.)
>  
> (I) Zeigen Sie : F(V)= V.
>  
> (II) Bestimmen Sie die Darstellungsmatrix des
> Endomorphismus F|V: V [mm]\to[/mm] V bezueglich der Basis B von V.
>  Halli Hallo,
>  
> koenntet ihr mir hier vielleicht helfen ?

Ein Tipp von mir: Seien [mm] $f_1,\dots,f_4$ [/mm] die Vektoren aus B und [mm] $e_1,\dots,e_4$ [/mm] die Vektoren [mm] $e^x,\dots,e^{4x}$. [/mm] Stelle jetzt [mm] $f_i=\sum\limits_{j=1}^4a_{ij}e_j$ [/mm] als Linearkombination dar, wenn die Matrix [mm] $(a_{ij})$ [/mm] regulär ist, dann ist B ebenfalls eine Basis.

mfG Moudi

>  
> gruss Lavanya

Bezug
                
Bezug
E-Funktion , lin. Abb.: Rueckfrage
Status: (Frage) beantwortet Status 
Datum: 09:53 Do 29.12.2005
Autor: Lavanya

Hi Moudi,

das hat jetzt geklappt. Dankeschoen......

Aber wie mache     ich die anderen beiden anderen Aufgaben?

Koenntest du mir da vielleicht auch helfen ?

gruss Dilani

Bezug
                        
Bezug
E-Funktion , lin. Abb.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:56 Do 29.12.2005
Autor: Julius

Hallo Dilani!

> Koenntest du mir da vielleicht auch helfen ?

Nein, da wir nicht wissen, wie $F$ aussieht... ;-)

Liebe Grüße
Julius


Bezug
                                
Bezug
E-Funktion , lin. Abb.: Mein Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:07 Do 29.12.2005
Autor: Lavanya

Ich habe vergessen anzugeben, wie f aussieht....

also

F: C( [mm] \IR, \IR) \to Abb(\IR ,\IR), [/mm] f [mm] \to [/mm] f '

sorry !

Vielleicht jetzt?

Bezug
                        
Bezug
E-Funktion , lin. Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:49 Do 29.12.2005
Autor: Julius

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

Offenbar bilden auch die Bilder der Basis $(e^x, e^{2x}, e^{3x}, e^{4x})$, also

$F(e^x)=e^x$,
$F(e^{2x}) = 2e^{2x$,
$F(e^{3x})=3e^{3x}$,
$F(e^{4x})=4e^{4x}$,

eine Basis von $V$. Daraus folgt: $F(V)=V$.

Zur letzten Aufgabe:

Kompliziert ginge es so:

Es sei für $i \in \{1,2,3,4\}$ $b_i$ der $i$-te Basisvektor der angegebenen Basis.

Finde für alle $i\in\{1,2,3,4\}$ Skalare $a_{1i},a_{2i},a_{3i}, a_{4i}$ mit

$F(b_i) = a_{1i}b_1 + a_{2i}b_2 + a_{3i}b_3 + a_{4i}b_4$.

Dann ist

$\pmat{a_{1i} \\ a_{2i} \\ a_{31} \\ a_{4i}}$

der $i$-te Spaltenvektor der gesuchten Darstellungsmatrix von $F$.

Nun haben wir aber zum Glück eine Transformationsformel für lineare Abbildungen:

Sind ${\cal B}$ und ${\cal C}$ verschiedene Basen und kennt man die Darstellung $M_{{\cal B}}(F)$ einer linearen Abbildung bezüglich einer Basis ${\cal B}$ sowie die Basiswechselmatrix $T_{{\cal B}}^{{\cal C}}$ (in den Spalten stehen die neuen Basisvektoren von ${\cal C }$ als Linearkombination der alten Basisvektoren von ${\cal B}$), so gilt:

$M_{{\cal C}}(F) = \left(T_{{\cal B}}^{{\cal C}})^{-1} \cdot M_{{\cal B}}(F) \cdot T_{{\cal B}}^{{\cal C}}$.

Und die Matrix von $F$ bezüglich der Basis $(e^x, e^{2x}, e^{3x}, e^{4x})$ hat eben eine besonders einfache Gestalt, das sollte man hier ausnutzen. :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de