www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - EXTREMWERTAUFGABEN MIT NEBENBE
EXTREMWERTAUFGABEN MIT NEBENBE < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

EXTREMWERTAUFGABEN MIT NEBENBE: Aufgabe aus dem Buch
Status: (Frage) beantwortet Status 
Datum: 20:42 Mi 16.03.2005
Autor: djselcuk

Hallo Leute!

Ich hoffe ihr könnt mir bei meinem Problem weiter helfen. Zur Zeit sind wir beim Thema Extremwertaufgaben mit Nebenbedingungen. Aus dem Buch sollen wir eine Aufgabe berechnen:

Gesucht ist ein Rechteck mit der Diagonalen 15 cm, das den größten Flächeninhalt hat.

Irgendwie habe ich die Fragestellung nicht verstanden! Ich brauche eine sofortige Hilfe! Danke schonmal!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.onlinemathe.de/read.php?topicid=1000004358&read=1&kat=Schule]

HELP!!!

        
Bezug
EXTREMWERTAUFGABEN MIT NEBENBE: antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mi 16.03.2005
Autor: molekular

grüß dich djselcuk,

> Gesucht ist ein Rechteck mit der Diagonalen 15 cm, das den
> größten Flächeninhalt hat.
>  
> Irgendwie habe ich die Fragestellung nicht verstanden! Ich
> brauche eine sofortige Hilfe! Danke schonmal!

mach dir am besten mal ne skizze mit nem rechteck und zeichne auch deine diagonale ein.
dann siehst du, dass sich deine seiten a und b in abhängigkeit voneinander verändern können ohne die länge der diagonalen zu verändern. da es sich um ein rechteck handelt, ist der winkel zwischen a und b 90grad und somit können wir mit dem pythagoras arbeiten.

-> [mm]d^2=a^2+b^2[/mm]

da d=15 ist folgt daraus

-> [mm]15^2=a^2+b^2[/mm]

löse nun nach einer variablen auf

-> [mm]b=\wurzel{15^2-a^2}[/mm]

der flächeninhalt eines rechtecks lautet

-> [mm]A=ab[/mm]

da du b in abhängigkeit von a hast, kannst du nun deine flächeninhaltsfunktion (zielfunktion) aufstellen.

-> [mm]A(a)=a\wurzel{15^2-a^2}[/mm]

der hochpunkt dieser funktion steht für maximalen flächeninhalt.
-> nullstelle der ableitung

->[mm]a=10,6[/mm]

aus [mm]b=\wurzel{15^2-a^2}[/mm]

->[mm]b=10,6=a[/mm]

->dein rechteck hat max A in form eines quadrats

hoffe, dass bringt dich weiter
schönen abend noch
mol

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de