www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - E funktionen integrieren
E funktionen integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

E funktionen integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 05.02.2011
Autor: dahic24

Aufgabe
Integiere folgende Funktion:
f(x)=x*lx(x)
[mm] f(x)=x^n*ln [/mm] x
und
[mm] \bruch{e^{(2x+4)^{2}}}{e^{4x^2-4}} [/mm]


Also mein Problem bei der 1 und 2 Aufgabe ist das ich nicht weiß wie man
ln x hochleitet/ableitet. Könnte mir das jemand erklären?

und bei der 3 Aufgabe weiß ich nicht ob ich richtig subventioniere:
[mm] u=4x^2-4 [/mm]
dann ist du ja die ableitung davon also
du=16x

aber du muss ja genauso wie der rest werden also [mm] e^{(2x+4)^{2}} [/mm]
wie mache ich das?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Grüße

        
Bezug
E funktionen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Sa 05.02.2011
Autor: schachuzipus

Hallo dahic24 und [willkommenmr],


> Integriere folgende Funktion:
>  f(x)=x*lx(x)
>  [mm]f(x)=x^n*ln[/mm] x
>  und
>  [mm]\bruch{e^{(2x+4)^{2}}}{e^{4x^2-4}}[/mm]
>  Also mein Problem bei der 1 und 2 Aufgabe ist das ich
> nicht weiß wie man
>  ln x hochleitet/ableitet. [eek]

Das heißt nicht hochleiten, sag' "integrieren" !

> Könnte mir das jemand
> erklären?

Die Ableitung von [mm]\ln(x)[/mm] kennst du doch, das ist [mm]\frac{1}{x}[/mm]

Eine Stammfunktion von [mm]\ln(x)[/mm] kannst du durch partielle Integration bestimmen:

[mm]\int{\ln(x) \ dx}=\int{1\cdot{}\ln(x) \ dx}[/mm]

Nun partiell integrieren mit [mm]u'=1[/mm] und [mm]v=\ln(x)[/mm]

Das brauchst du hier aber nicht.

Aufgabe 1) kannst du mit partieller Integration erschlagen; setze dazu [mm]u'=x[/mm] und [mm]v=\ln(x)[/mm]


Aufgabe 2) geht analog mit partieller Integration, [mm]u'=x^n[/mm], [mm]v=\ln(x)[/mm]

>  
> und bei der 3 Aufgabe weiß ich nicht ob ich richtig
> subventioniere: [kopfkratz3]

Du meinst "subtrahieren" ;-)

Das heißt "substituieren", Mensch Meier ...

>  [mm]u=4x^2-4[/mm]
>  dann ist du ja die ableitung davon also
>  du=16x
>  
> aber du muss ja genauso wie der rest werden also
> [mm]e^{(2x+4)^{2}}[/mm]
>  wie mache ich das?

Vereinfache erstmal mittels Potenzgesetzen!

[mm]\frac{a^n}{a^m}=a^{n-m}[/mm]

Rechne das mal aus, dann siehst du schon die nötige (lineare) Substitution ...

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Grüße

LG

schachuzipus


Bezug
                
Bezug
E funktionen integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Mo 07.02.2011
Autor: dahic24

zunächst einmal danke.
Ich wollte fragen ob mein ergebnis
[mm] [\bruch{1}{2}x^2*ln [/mm] x- [mm] \bruch{1}{x}*\bruch{1}{2}x^2] [/mm]
stimmt und ob man das vereinfachen kann.
Und ob für die 3 Aufgabe
[mm] [\bruch{1}{16}e^{16x-4}] [/mm]
raus kommt und ob man das auch noch vereinfachen kann.

Außerdem wollte ich fragen wie man diese Aufgabe anfängt:
[mm] \bruch{\wurzel{e^{2x-4}}}{e^{2x+2}} [/mm]

Lieben dank schon mal im voraus.


Bezug
                        
Bezug
E funktionen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mo 07.02.2011
Autor: MathePower

Hallo dahic24,

> zunächst einmal danke.
>  Ich wollte fragen ob mein ergebnis
>  [mm][\bruch{1}{2}x^2*ln[/mm] x- [mm]\bruch{1}{x}*\bruch{1}{2}x^2][/mm]


Dieser Faktor stimmt nicht:

[mm][\bruch{1}{2}x^2*ln\left(x\right)- \red{\bruch{1}{x}*\bruch{1}{2}}x^2][/mm]



>  stimmt und ob man das vereinfachen kann.
>  Und ob für die 3 Aufgabe
>  [mm][\bruch{1}{16}e^{16x-4}][/mm]


Das ist richtig. [ok]


>  raus kommt und ob man das auch noch vereinfachen kann.
>  
> Außerdem wollte ich fragen wie man diese Aufgabe
> anfängt:
>  [mm]\bruch{\wurzel{e^{2x-4}}}{e^{2x+2}}[/mm]


Vereinfache den Ausdruck [mm]\wurzel{e^{2x-4}}[/mm]
gemäß den Potenzgesetzen.


>  
> Lieben dank schon mal im voraus.
>  


Gruss
MathePower

Bezug
                                
Bezug
E funktionen integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Di 08.02.2011
Autor: dahic24

[mm] [\bruch{1}{2}x^2\cdot{}ln\left(x\right)- \red{1}x^2] [/mm]
ist das richtig? weil 1/x * x ja 1 sein sollte (hoffe ich einfach mal).
grüße

Bezug
                                        
Bezug
E funktionen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Di 08.02.2011
Autor: MathePower

Hallo dahic24,

> [mm][\bruch{1}{2}x^2\cdot{}ln\left(x\right)- \red{1}x^2][/mm]
>  ist
> das richtig? weil 1/x * x ja 1 sein sollte (hoffe ich
> einfach mal).


Das ist leider nicht richtig.

Der Faktor muss kleiner 1 sein.


>  grüße


Gruss
MathePower

Bezug
                                                
Bezug
E funktionen integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:00 Di 08.02.2011
Autor: dahic24

könnte es bitte jemand für mich auflösen.
Würde es einmal gerne richtig sehen.

Bezug
                                                        
Bezug
E funktionen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 01:49 Mi 09.02.2011
Autor: leduart

Hallo
warum schreibst du nicht deinen Rechenweg auf? dann sehen wir, wo du Fehler machst und können dir helfen. sonst lernst du nix.
am besten integrier gleich [mm] x^n*ln(x) [/mm] dann hast du auch die <Lösung für n=1
Gruss leduart


Bezug
                                                                
Bezug
E funktionen integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 09.02.2011
Autor: dahic24

also mein
f´=x
g= ln x
g´=1/x
f = [mm] \bruch{1}{2}x^2 [/mm]

eingesetzte ist das doch:
[mm] [\bruch{1}{2}x^2*ln x]-\bruch{1}{2}x^2*1/x*dt [/mm]
oder nicht?

Bezug
                                                                        
Bezug
E funktionen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Mi 09.02.2011
Autor: leduart

Hallo


>  f´=x
>  g= ln x
>  g´=1/x
>  f = [mm]\bruch{1}{2}x^2[/mm]
>  
> eingesetzte ist das doch:

wo hast du das denn eingesetzt?

>  [mm][\bruch{1}{2}x^2*ln x]-\bruch{1}{2}x^2*1/x*dt[/mm]

an dem dt rate ich, dass du eigentlich [mm][\bruch{1}{2}x^2*ln x]-\integral{\bruch{1}{2}x^2*1/x*dx}[/mm]
meinst? warum lässt du das integral weg? warum steht da dt??

jetzt musst du also noch integrieren.
schreib bitte Sachen vollständig auf, benutze die vorschau um dein post sorgfältig zu überprüfen.
gruss leduart


Bezug
                                                                                
Bezug
E funktionen integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mi 09.02.2011
Autor: dahic24

ich kann doch gar nicht intrigieren weil ich keine Integrations-Werte habe, oder nicht?
Außerdem dachte das man den Schritt überspringen kann und das zusammen schreiben kann.

Bezug
                                                                                        
Bezug
E funktionen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Mi 09.02.2011
Autor: MathePower

Hallo dahic24,

> ich kann doch gar nicht intrigieren weil ich keine
> Integrations-Werte habe, oder nicht?


Du kannst mit und ohne Integrationsgrenzen integrieren.


>  Außerdem dachte das man den Schritt überspringen kann
> und das zusammen schreiben kann.


Gruss
MathePower

Bezug
                                                                                                
Bezug
E funktionen integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Do 10.02.2011
Autor: dahic24

tut ich glaube ich stehe auf einem Schlauch.
Kann mit jemand eine Seite empfehlen wo das alles erklärt wird.
Mir wird langsam übel von den e Funktionen -.-

Bezug
                                                                                                        
Bezug
E funktionen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Do 10.02.2011
Autor: Tyskie84

Hallo,

[]Hier kannst du üben und []hier wird's nochmal erklärt!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de